CipherLab
User Guide

C Language Programming
Part I1: Data Communications

For 8600 Series Mobile Computers

Version 1.09

CIPHER Lm

Copyright © 2014 ~ 2016 CIPHERLAB CO., LTD.
All rights reserved

The software contains proprietary information of CIPHERLAB CO., LTD.; it is provided
under a license agreement containing restrictions on use and disclosure and is also
protected by copyright law. Reverse engineering of the software is prohibited.

Due to continued product development this information may change without notice. The
information and intellectual property contained herein is confidential between CIPHERLAB
and the client and remains the exclusive property of CIPHERLAB CO., LTD. If you find
any problems in the documentation, please report them to us in writing. CIPHERLAB does
not warrant that this document is error-free.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of CIPHERLAB CO., LTD.

For product consultancy and technical support, please contact your local sales
representative. Also, you may visit our web site for more information.

The CipherLab logo is a registered trademark of CIPHERLAB CO., LTD.

All brand, product and service, and trademark names are the property of their registered
owners.

The editorial use of these names is for identification as well as to the benefit of the
owners, with no intention of infringement.

CIPHERLAB CO., LTD.
Website: http://www.cipherlab.com

http://www.cipherlab.com/

RELEASE NOTES

Version Date Notes

1.09 Sep. 26, 2016 Part |

> Modified: Appendix I — SCANNERDESTBL ARRAYS:
Symbology Parameter Table for CCD/LASER Reader:
ScannerDesTblI[]:
*Byte 12/14/16/18 [bit 6-0] = Max. 127
*Byte 13/15/17/19 [bit 7-0] = Min. 4
Symbology Parameter Table for 2D Reader:
*Byte 14/16/18/23/28/30/32/34 [bit 7]=1, [bit 6]=Reserved,
[bit 5-0]=Max. 55
*Byte 15/17/19/24/29/31/33/35 [bit 7-6]=Reserved,
[bit 5-0]=Min. 4

» Modified: Appendix Il — SYMBOLOGY PARAMETERS:

Scan Engine, CCD or Laser:

CODE 2 OF 5 FAMILY -
INDUSTRIAL 25:
*Byte 12 [bit 6-0] = Max. 127
*Byte 13 [bit 7-0] = Min. 4
INTERLEAVED 25:
*Byte 14 [bit 6-0] = Max. 127
*Byte 15 [bit 7-0] = Min. 4
MATRIX 25:
*Byte 16 [bit 6-0] = Max. 127
*Byte 17 [bit 7-0] = Min. 4

MSI -
*Byte 18 [bit 6-0] = Max. 127
*Byte 19 [bit 7-0] = Min. 4

Scan Engine, 2D:

CODABAR -
*Byte 34 [bit 7]=1, [bit 5-0] = Max. 55
*Byte 35 [bit 5-0] = Min. 4
* descriptions for Length Qualification added

CODE 2 OF 5 -
INDUSTRIAL 25 (DISCRETE 25):
*Byte 32 [bit 7]=1, [bit 5-0]=Max. 55
*Byte 33 [bit 5-0]=Min. 4
INTERLEAVED 25:
*Byte 14 [bit 7]=1,[bit 5-0] = Max. 55
*Byte 15 [bit 5-0] = Min. 4

CODE 39 -
*Byte 23 [bit 7]=1, [bit 5-0]=Max. 55
*Byte 24 [bit 5-0]=Min. 4

CODE 93 -
*Byte 28 [bit 7]=1, [bit 5-0]=Max. 55
*Byte 29 [bit 5-0]=Min. 4

MSI -
*Byte 18 [bit 5-0] = Max. 55
*Byte 19 [bit 5-0] = Min. 4

CODE 11 -
*Byte 30 [bit 7]=1,[bit 5-0]=Max. 55
*Byte 31 [bit 5-0]=Min. 4

1D Symbologies -
MATRIX 25:
*Byte 16 [bit 5-0]=Max. 55
*Byte 17 [bit 5-0]=Min. 4

Part 11

- None

1.08 Mar. 21, 2016 Part |
» New: 2.1.9 Input — str_input(), int_input, ip_input functions added

> Modified: 2.4.1 — definition of Subscript 7 [bit 7] in WedgeSetting
array

> Modified: 2.14.5 — auto_flush() function added
> Modified: 2.14.6 — flush_DBF() function added
> Modified: Appendix I —

Symbology Parameter Table for CCD/Laser Reader:

ScannerDesTbl[]:

*Byte 9 [bit 7—6] = ‘00’ (default)
*Byte 9 [bit 5—~4] = ‘00’ (default)
*Byte 9 [bit O] = ‘O’ (default)

Symbology Parameter Table for 2D Reader:
*Byte 5 [bit 5] = ‘1’ (default)

*Byte 5 [bit 0] = ‘1’ (default)
*Byte 6 [bit 4] = ‘1’ (default)
*Byte 9 [bit 7—6] = ‘00’ (default)
*Byte 10 [bit 1] = ‘0’ (default)
*Byte 11 [bit 7] = ‘0’ (default)
*Byte 25 [bit 6] = ‘1’ (default)
> Modified: Appendix I —

Symbology Parameter Table for 2D Reader:
*Byte 44 [bit 2] = ‘0’ (default) appended
*Byte 44 [bit 1] = ‘O’ (default) appended

> Modified: Appendix Il —

Scan Engine — CCD or Laser:
*Byte 9 [bit 7—6] = ‘00’ (default)
*Byte 9 [bit 5~4] = ‘00’ (default)
*Byte 9 [bit 0] = ‘0’ (default)

Scan Engine — 2D:

*Byte 5 [bit 5] = ‘1’ (default)
*Byte 5 [bit 0] = ‘1’ (default)
*Byte 6 [bit 4] = ‘1’ (default)
*Byte 9 [bit 7—6] = ‘00’ (default)
*Byte 10 [bit 1] = ‘0’ (default)
*Byte 11 [bit 7] = ‘0’ (default)
*Byte 25 [bit 6] = ‘1’ (default)
> Modified: Appendix Il —
Scan Engine — 2D: (2D Symbologies):
*Byte 44 [bit 2] = ‘0’ (default) appended
*Byte 44 [bit 1] = ‘0’ (default) appended
Part 11
> Modified: Appendix 111 —

Bluetooth Examples — Bluetooth HID:
definition of Subscript 7 [bit 7] in WedgeSetting array

USB Examples — USB HID:
definition of Subscript 7 [bit 7] in WedgeSetting array

1.07 No. 12, 2015 Part |

4
»
4
»
4

Modified: 2.1.1 — return value ‘128’ for CheckWakeUp added
Modified: 2.1.1 — clear_bss() function added

Modified: Appendix | — Byte 4, bit 3 added to ScannerDesTblI[]
Modified: Appendix I — ScannerDesTbl2[] added

Modified: Appendix Il — Scan Engine — CCD or Laser —
UPC/EAN Families — UPC-E: Byte4, bit 3 UPC/EAN security added

Modified: Appendix Il — Scan Engine — CCD or Laser —
UPC/EAN Families — EAN-13 Addon Mode, Addon Security for
UPC/EAN added

Part 11

4
»
4

Modified: 1.4.1 — Ox09 BT_ACL_36XX added in Setting for Bluetooth
Modified: 4.1.3 — values of 802.11n added for NetStatus structure
Modified: 4.1.4 — values revised for RadioStatus structure

1.06 May 07, 2015 Part |

»

Modified: 2.4.1 — value of Subscript 0: Bit7-0 revised
Subscript 2: Bit 7 added

Modified: 2.4.1 — 1% ELEMENT: KBD/Terminal Type (Terminal Type
revised for value 11 ~ 15)

Modified: 2.4.1 — 3™ ELEMENT: INTER-CHARACTER DELAY (time
range & example revised)

Modified: 2.10.1 — ConfigureTriggerKey function added

Modified: 2.12.4 — FONT_SYS_08X16, FONT_SYS_14X28 added for
CheckFont, GetFont, and SetFont functions

Modified: 2.12.4 — 0x100 UTF-8 added for SetLanguage function

Part 11

v v v VvV Vv v Vv

Modified: 1.4.1 — settings for USB Mass Storage Device added
Modified: 5.1 — CipherLab ACL Packet Data added

Modified: 5.2.1 — ACL36xx[16], ReservedByte[204]

New: 5.3.5 ACL Functions

Modified: Appendix 111 — Wedge Emulator section removed
Modified: Appendix I11 — ACL added in Bluetooth Examples section

Modified: Appendix I11 — USB Mass Storage Device: description for
open_com revised

1.05 Jan. 07, 2015 Part |
» Modified: 2.1.3 — comment added for AUTO_OFF

> Modified: 2.3.2 — scanMode, scanTimeout added for RFID parameter
structure

Modified: 2.4.1 — Subscript 2, Bit 6-1 & O added
Modified: 2.11.7 — statement for JPEG library added
Modified: 2.12.2 — table of Display Capability updated

Modified: 2.14.6 DBF Files and IDX Files —
Iseek_DBF/member_in_DBF/tell_DBF: on error, it returns -1

v Vv Vv Vv

rebuid_index: ruturns 1 for success; returns 0 for failure

Part 11
> New: 3.4 WISPr Library

» Modified: 5.3.3 — parameter BTOBEXFTEServer removed from
BTPairingTest

» Modified: Apendix 111 — Bluetooth HID & USB HID: Subscript 2, Bit
6-1 (Inter-character delay) added

1.04 Sep. 03, 2014 Part |

> Modified: 2.11.6 Graphics — SHAPE_FILL of circle/rectangle
corrected

Modified: 2.12.1 Font Size — new font files added

Modified: 2.12.4 Special Fonts — CheckFont, GetFont, SetFont
updated

> Modified: 2.12.5 Font Files — new font files added

» Modified: Appendix I (SYMBOLOGY PARAMETER TABLE I1) —
Byte 26/Bit 6 changed to ‘Reserved’ (ISBT 128 not supported)

» Modified: Appendix Il (Scan Engine, 2D) — Code 128: ISBT-128
removed

Part 11

- None

1.03 Aug. 05, 2014 Part |

v v v v v Vv

Modified: 2.2 — ConfigureReaderRAM function added
Modified: 2.11.1 — BacklitOn function added

Modified: 2.11.7 — ShowJPG, ShowJPGBySz functions added
Modified: 2.13.3 — fsize, ffreebyte functions revised
Modified: 2.14.5 — fformat function revised

Modified: Appendix I (SYMBOLOGY PARAMETER TABLE I) —
Byte 11/Bit 5 (GTIN -> GTIN-14)

Modified: Appendix | (SYMBOLOGY PARAMETER TABLE I1) —
Byte 2/Bit 5 (0: Disable MSI set to default), Byte43/Bit 4-1
(illumination level) added

Modified: Appendix Il (Scan Engine, CCD or Laser) — Byte 11/Bit
5 (GTIN -> GTIN-14)

Modified: Appendix Il11 (User Preference) — Byte 43/Bit 4-1
(illumination level) added

Part 11

- None

1.02 Jun. 17, 2014 Part |

»
»

Modified: 2.12.1 — the Kr font file removed

Modified: 2.12.4 — return value concerning KR removed (CheckFont,
Get Font, SetFont)

Modified: 2.12.5 — Font8600-KR20.shx, Font8600-KR24.shx
removed

Part 11

- None

1.01

1.00

May 13, 2014

Jan. 8, 2014

Part |

»
»
»
»

Modified: 1.1.1 — descriptions updated
Modified: 2.2.1 — global array FSEAN128[2], AlMark[2] added
Modified: 2.10.1 — SetTrig2Key added

New: 2.11.7 Color Display — SetColor, GetColor, ShowPic, GetPic
functions added

Modified: Appendix | (SYMBOLOGY PARAMETER TABLE 1) —
[Byte 11/Bit 6], [Byte 7/Bit 2,1] added

Modified: Appendix 1 (SYMBOLOGY PARAMETER TABLE I1) —
[Byte 44/Bit 7,6,5,4,3] , [Byte 43/Bit 7,6,5] , [Byte 7/Bit 2] added

Modified: Appendix Il (Scan Engine, CCD or Laser) — [Byte
11/Bit 6], [Byte 7/Bit 2,1] added

Modified: Appendix Il (Scan Engine, 2D) — [Byte 7/Bit 2,1], [Byte
44/Bit 7,6,5,4,3] added

Modified: Appendix Il11 — Byte 43/Bit 7 added (User Preferences),
Byte 43/Bit 6,5 added (Reader Redundancy)

Part 11

»

»

Modified: 4.1.1 NETCONFIG Structure — RssiThreshold, Rssidelta,
RoamingPeriod added

Modified: Appendix I —index 91, 92, 93 added for
GetNetParameter/SetNetParameter

Part |

»

Initial Release

Part 11

»

Initial Release

CONTENTS

L I NS i AN L I -3-
INTRODUCT ION....iiicctrisseerssssrsssnsssssssssssssssssssssssssssssssssnsesssnssssssssssnsssssnssssnsssssnssssanesssnsssssnssssas 1
COMMUNICATION PORTS. . iicciricrerrctrrssmeees e essssesssmeessssesssssesssnsessssssssnsesssnsessanesssnsesssnsens 3
T = - 1 o= 4
1.1.1 CommuNiCatioN PAramMETErS ... ieeececieeeeste st e et s e nese 4
1.1.2 Receive & Transmit BUFFErS ...ttt 4

22 (011, o o 1 1 | 5
I T Y O I TSROSO 5
TL.2.2 XONXOFF ...ttt ee st e et e st et e e s e e st st e sse et e sesae et e ssesneessesneensessenanansens 6
G B U T o T £ 7

R R @0 T 01 1o [N T IR =1 i] T 8
G 2000 O T o T £ 8

1.4 Open and ClOSE COM ... s se e e saeenesee s e e e e eneeneens 9
2 I T [0 1S 9

1.5 Read and WIITE Dat@.......ccccoceeeeeeseceee ettt ses st st e st et enae s nan e 11
T T A T 0 1SS 11
TCPZ/IP COMMUNICATIONS. .. ccterccerscte s sme e s seessssesssmeesssneessms e sssmsesssnesssnsesnsnsessns 15
2.1 Native Programming INTErface ... 16
Dt I = 1] = S 16
Dt A Y Tox Lo S 16

2.2 Socket Programming INtEerface ... cceece e 20
Nt N = = T [0 20
D220y U 1 o o] o 1 22

AR V4 (ST o o 11 T SRR 44
pZ2C 0t I T o T 1S 44

2.4 Supplemental FUNCHIONS ..o 46
WIRELESS NETWORKING. ... eeeesnnnnesnnnnnnnnnnnsnnsnnnnssnsnnnnn 53
3.1 NetWOrk CONFIQUIATIONccciiiereeeeerieete e n e 54
0G0 I g g1 0 =T 0 a T =T a1 = 1 T o S 54

Gt 2 T o3 Lo S 54

3.2 Initialization & TermMiNAtiONccccecececeeese et e 56
G @)Y =T oV 1S 56

G A ¥ 1 o3 Lo S 56

G I B NN Ty WY V0] ST = 1 1 59

BC G 0t I ¥ o] 1 59

G VA BT IR o] = VUSSR 60
G IS Y 1 1 o4 11 = 60

BT 2 Y/ Y g T Y TR 61

CipherLab C Programming Part Il

3.4.3 CUSTOMIZEA METNOA ...ttt e e et e s s eerr e e s sear e s s sseeesseereesssnseeessnns 64
R N VA Y o gl o o] O Yo [YRR 66
IEEE BO2.11BY// G/ N .unnnsnsnsnssnssssssssnsnnnnn 67
g Y W [0 10 1 68
4.1.1 NETCONFIG StIUCTUI . .uueiieiiiieeeceteeee e eeeeereereeee st s e sssesrse e s s s ssssssassssessssssssnsnnssessssens 68
4.1.2 WLAN_FLAG STIUCTUIE ..ottt ettt st et eesee s s e e s snenneans 71

4. 1.3 NETSTATUS SEIUCTUI ..ttt esreereeee s s e sessasrse e s s s ssssssassesesssssessnssnssessssens 73
4.1.4 RADIOSTATUS STIUCTUIE oot eeeeeeteees st ee e saesre e e s s s sessssass s s e e s s s sessnsnnsseasssens 74
4.1.5 Wi-Fi HOtspot Search StrUCLUIEc.oceoceiececececeee ettt 75
4.1.6 Wi-Fi Profile STrUCTUIEeeeeieeeeeee ettt s st e s s st e s sssase e s sesssee s sesssesssensseessesnneenes 77

A U T o [0 1 TR 79
4.2.1 Scanning for Wi-Fi NOtSPOLSccco ettt 79

B LURET OO T H auuuuuuuuuuunnnnnnsnsnnsnsnsssnssssssssssssnsssnnn 81
5.1 Bluetooth Profiles SUPPOITE ... 82
LTS Y 1 8o | = 83
5.2.1 BTCONFIG SETIUCTUIE ...t eee et eeeeeeeeeeseaanneeseeaneeeseaanneeseaanneesean 83
5.2.2 BT _FLAG STIUCTUIE ...t st e st e st ee s n e s e s e e s e s e e e ne e ennn s 84
5.2 .3 BTSEARCH StlUCTUI ...t ee et e e ee e e e e eeeeeeeseaaneeeseaaneeeseaaneeeseannneeseans 85
B5.2.4 BTSTATUS SEIUCTUIE ...t ee e e e eeeee e e eeseeeeseaaneeessasneeeseaanneeseaanneeseans 86

LS TRC N L { To3 1[0] R 87
5.3.1 Frequent DEVICE LiST.....ccc e 87
5.3.2 INQUITY et e e r e e e e e e e e e e e e e me e s e e s e nrennenn e e e e enenneas 88
LI TR B V1 ¢ | o S 89
5.3.4 USETUI FUNCHION CAl ...ttt ettt ettt e e e e e e sessssnseeessssesassseeeeessseeasnnns 90
5.3.5 ACL FUNCTIIONS ..ottt ettt ettt ettt e e e aeeteeeessssesasnsseeeeseesasassnneeessseesassseneeessseaasnnn 92
USB CONNECT ION uuuuuuuuuuuuusssnsnnsssn o7
LT RO LY 7<T YTV 98
B.L. 0 USB HID ..o e e e e e e eae e e e e e eemeeeeeaameeeeeeanneeseaaneesesanneeeseanneesseannneenaans 98
B5.1.2 USB VIFTUBI COM ... eeeeeeeeeeeeeeeeaseeeeeeaneeeessaaneeeseaaneesssanneesseaaneeeeaans 98
6.1.3 USB MaSS StOrage DEVICE ...ttt ee e 98

LS T2 1 U3 A 99
5.2.1 USBCONFIG SUTIUCTUIE ..ot eeee e ee et eeeeeeeeeeeeeaneeeseaaneeeseaaneeeseaaneeesaan 99
6.2.2 USB_FLAG STIUCTUIE ...ttt ettt ee s e st sae s et sae e aesne e 99
GPS FUNCT IONALITY ttttiitiiiiiiirrsss 101
A TS Y T | = 102

T .11 GPSINFO STTUCTUI ..o eeeeeeeeeee e e e et e e eaaeeeeeaameeeeaaeneesseaneeneeannnenn 102

QA2 LB [Lo 1[0] R 103
FTP FUNCT HONALITY aussnsn 105
8.1 USING DOFTP FUNCHION ...ttt sn e n e 107

L 300 T T U 1o (3 0] 107

L Tt 2 I o T o [SO UR USSR 109

£ B2 Lo 11 W1 Ve ST o] '] o1 Al 1 = S 111

CipherLab C Programming Part Il

8.2.2 Local File INTOrMAatioNooceiieeecee ettt s 114

S IZRC IV =Y ¢ T0] o IO 0 o] 115

LS B2 NV = T T F= 1 (o] V2 | = Vo 116
8.2.5 UPdAate SCIIPL Fil ..ottt 116
8.2.6 Update USEr Program........ececereeeee et ces e see e ses e s sseesse s snsessesnsesnes 117
8.2.7 SWItCh t0 @ DIffErent SEIVEN ...t 117
8.2.8 Wildcards for Remote File NamMeooiiieiiceececeeece e 118
LS Y B Lo (U 1 =TT 120
8.3.1 FTP_SettingS STIUCTUIEoooeiieeeeeeeeee ettt ee e se e ee e 120
ST AN \V2=1 g [o1=To I ol I ol = U1 0 (1 (o] £ 121
8.4.1 CoNNECE: FTPOPEN ... 122
8.4.2 DISCONNECTE: FTPCIOSEueeeiieeeie ettt e s s s e s s as e s s s e s s an e e s s sane e s 123
LR IRC B CT=Y D T1 g =Tod (0] o VAs ol o 15 | SRS 123
8.4.4 Change Directory: FTPCW ... 124
8.4.5 Upload File: FTPSend, FTPAPPENG. ... 125
8.4.6 DOWNIOAA Fil@: FTPRECV ...ttt s s e s s as e s s s s s an e s s ane s 127
8.4.7 Delete Files from FTP Server: FTPDelete ... 128
8.4.8 Rename Files on FTP Server: FTPRENAME.......ooveieiccveieeceeee e 129
8.4.9 Wildcards for Remote File Name (User-Specified Sring)cccccceeeeeeennee. 130
8.5 File HANAIING ..o e 131
SRS T N B 7N I T [131
SRS T B 1= | i | [132
8.6 SD CAld ACCESS ..ueiiceiiieeeeeeeectee et e estee st e s s sbe e sabeesasessbeesssseesbessaseeessbeesbessassessseesansnans 133
LS ST N D =T o (o] Y SRS 134

ST 2 o1 (ST 1\ F=1 o o [137
NET PARAMETERS BY INDEX . iiiiiiiiiiimmeissiiiisissssssessiisssssssssssssssssssssssssssssssssssssssnnes 139
NETCONFIG & BTCONFIG ...ttt et s ee e st s e s ae s sae e s ssae s sss e e sne e s snaessanes 139
WireleSS NETWOIKING .. .ottt s e s e e et e s re e e e neenenne e 139

(2] LU T=Y (0 T0) o TS ad o 15 1 | 142
L] =T OX @ 1\ 1 143
NET STATUS BY INDEX ... iiiiiccccimmieiiiiiiiisssseessiiisssssssssssssseisssssssssssssssssssssssssssssssssssssssnnnes 145
WIireleSS NETWOIKING ..ceiiieeececiee ettt sae s et s e s s s e tesre e e e seenenneenns 145
(2] [UT=Y 0 T0) TS ad o 15 1 | 145
A Y I S 147
WLAN EXample (802.11B7G/N) ettt te et eee st se e e ne e 147
WPA ENabled fOr SECUIILY ... 148
BIUETOOTN EXAMPIESo 149
Y o AV, F= TS (Y 149

S o S 1= LY 150

(5] (U TY w00 o a1 1 151

[1 R 154
(D10 N] = = TR 155
O R 156

CipherLab C Programming Part Il

USB ViIFTUAI COM ...ttt s te et sste st st st s e se e e e e s e saesasessesaeansessesanansens 157

L0 1] = I o | 1 OSSR 158
USB MasSS StOrage DEVICEc.eeceeiecieeececiesieseeste st e e st see e sses e et e s snesae s sanane s 160
FTP RESPONSE & ERROR CODE .. nnannan 161
L I e =T] 6 T 1 SRS RR 161
L@] T | =Y 161
Summarized With Error COUE.... ettt 161
o O Yo [RS 161
LT 1T = =1 o] S 161
(0] o] 1= o W =1) oS 161
LTy o B TT =T ox (o] Y =] 162

(@1 =T To [STN BT T g=Tox (o] oY =1 o] 162

L8] o] (o T= o N =1 o] S 162

(D T0)11V o] [o'T=To I =1 o I S 162

INTRODUCTION

This C Programming Guide describes the application development process with the “C”
Compiler in details. It starts with the general information about the features and usages
of the development tools, the definition of the functions/statements, as well as some
sample programs.

This programming guide is meant for users to write application programs for CipherLab

8600 Series Mobile Computers by using the “C” Compiler. It is organized in chapters
giving outlines as follows:

Part I: Basics and Hardware Control

Chapter 1 “Development Environment” — gives a concise introduction about the “C” Compiler
and the development flow for applications, which provides step-by-step description in
developing application programs for the mobile computers with the “C” Compiler.

Chapter 2 “Mobile-specific Function Library” — presents callable routines that are specific to the
features of the mobile computers. For data communications, refer to Part Il.

Chapter 3 “Standard Library Routines” — briefly describes the standard ANSI library routines for
in many ANSI related literatures there can be found more detailed information.

Chapter 4 “Real Time Kernel” — discusses the concepts of the real time kernel, uC/0S. Users can
generate a real time multi-tasking system by using the uC/0S functions.

Part ll: Data Communications

Chapter 1 “Communication Ports”
Chapter 2 “TCP/IP Communications”
Chapter 3 “Wireless Networking”
Chapter 4 “IEEE 802.11b/g/n”
Chapter 5 “Bluetooth”

Chapter 6 “USB Connection”
Chapter 7 “GPS Functionality”
Chapter 8 “FTP Functionality”

CipherLab C Programming Part Il

Chapter 1
COMMUNICATION PORTS

There are at least two communication (COM) ports on each mobile computer, namely
COM1 and COM2. The user has to call SetCommType() to set up the communication
type for the COM ports before using them.

The table below shows the mapping of the communication (COM) ports. With the type of
interface specified, the user can use the same routines to open, close, read, and write
data.

comMi COM2 CoOM4 COM5 COM6
RS-232 Bluetooth RFID USsB Fast VPort

Note: The Bluetooth profiles supported include SPP, DUN, and HID.

IN THIS CHAPTER

0T I 7 T o 4
1.2 FIOW CONtrol ... e 5
1.3 Configure SettingSo.ieiiii i 8
1.4 Open and CloSe COMiiiiiiiiii et eaeeaaaas 9
1.5 Read and Write Dataccovieiiiiii i 11

CipherLab C Programming Part Il

1.1 BASICS

1.1.1 COMMUNICATION PARAMETERS

RS-232 Parameters

Baud Rate: 115200, 57600, 38400, 19200, 9600, 4800
Data Bits: 7o0r8

Parity: Even, Odd, or None

Stop Bit: 1

Flow Control: RTS/CTS, XON/XOFF, or None

USB/Fast VPort Parameters

Baud Rate: Ignored, included only for compatibility in coding.
Data Bits: Ignored, included only for compatibility in coding.
Parity: Ignored, included only for compatibility in coding.
Stop Bit: Ignored, included only for compatibility in coding.
Flow Control: Ignored, included only for compatibility in coding.

1.1.2 RECEIVE & TRANSMIT BUFFERS

Receive Buffer

A 256-byte FIFO buffer is allocated for each port. The data successfully received is stored in this
buffer sequentially (if any error occurs, e. g. framing, parity error, etc., the data is simply
discarded). However, if the buffer is already full, the incoming data will be discarded and an
overrun flag is set to indicate this error.

Transmit Buffer

The system does not allocate any transmit buffer. It simply records the pointer of the string to be
sent. The transmission stops when a null character (0x00) is encountered. The application program
must allocate its own transmit buffer that should not be modified during transmission.

Chapter 1 Communication Ports

1.2 FLOW CONTROL

To avoid data loss, three options of flow control are supported and done by background
routines.

) None (= Flow control is disabled.)
2) RTS/CTS
3) XON/XOFF

Note: Flow control is only applicable to the direct RS-232 COM port, which is usually
assigned as COM1.

1.2.1 RTS/CTS

RTS now stands for Ready for Receiving instead of Request To Send, while CTS for Clear
To Send. The two signals are used for hardware flow control.

Receive

The RTS signal is used to indicate whether the storage of receive buffer is free or not. If the
receive buffer cannot take more than 5 characters, the RTS signal is de-asserted, and it instructs
the sending device to halt the transmission. When its receive buffer becomes enough for more than
15 characters, the RTS signal becomes asserted again, and it instructs the sending device to
resume transmission. As long as the buffer is sufficient (may be between 5 to 15 characters), the
received data can be stored even though the RTS signal has just been negated.

Transmit

Transmission is allowed only when the CTS signal is asserted. If the CTS signal is negated (=
de-asserted) and later becomes asserted again, the transmission is automatically resumed by
background routines. However, due to the UART design (on-chip temporary transmission buffer),
up to five characters might be sent after the CTS signal is de-asserted.

CipherLab C Programming Part Il

1.2.2 XON/XOFF

Instead of using RTS/CTS signals, two special characters are used for software flow
control — XON (hex 11) and XOFF (hex 13). XON is used to enable transmission while
XOFF to disable transmission.

Receive

The received characters are examined to see if it is normal data (which will be stored to the receive
buffer) or a flow control code (set/reset transmission flag but not stored). If the receive buffer
cannot take more than 5 characters, an XOFF control code is sent. When the receive buffer
becomes enough for more than 15 characters, an XON control code will be sent so that the
transmission will be resumed. As long as the buffer is sufficient (may be between 5 to 15
characters), the received data can be stored even when in XOFF state.

Transmit

When the port is opened, the transmission is enabled. Then every character received is examined
to see if it is normal data or flow control codes. If an XOFF is received, transmission is halted. It is
resumed later when XON is received. Just like the RTS/CTS control, up to two characters might be
sent after an XOFF is received.

Note: If receiving and transmitting are concurrently in operation, the XON/XOFF control
codes might be inserted into normal transmit data string. When using this method,
make sure that both sides feature the same control methodology; otherwise, dead
lock might happen.

Chapter 1 Communication Ports

1.2.3 FUNCTIONS
com_cts
Purpose To check the current CTS state on the direct RS-232 port.
Syntax U32 com_cts (U32 port);
Parameters U32 port
1 COML1 for RS-232 port
Example if (com_cts(l) == 0) printf(“COM 1 CTS is negated™);

Return Value

else printf(“COM 1 CTS is asserted”);
If asserted, it returns 1. (= Mark)

Otherwise, it returns 0. (= Space)

com_rts
Purpose To set the RTS signal on the direct RS-232 port.
Syntax void com_rts (U32 port, U32 val);
Parameters U32 port
1 COML1 for RS-232 port
int val
(0] RTS signal is negated.
1 RTS signal is asserted.
Example com_rts(1, 1); // COM1 is set as RTS asserted

Return Value

Remarks

None

This routine controls the RTS signal. However, RTS might be changed by the
background routine according to the status of the receive buffer.

CipherLab C Programming Part Il

1.3 CONFIGURE SETTINGS

1.3.1 FUNCTIONS
SetCommType
Purpose To set the communication type of a specific COM port.
Syntax U32 SetCommType (U32 port, U32 type);
Parameters U32 port
COM port to be used. Refer to the COM Port Mapping table.
U32 type
O COMM_DIRECT Direct RS-232
4 COMM_RF RF, Bluetooth SPP/DUN/HID
7 COMM_USBHID USB HID
8 COMM_USBVCOM USB Virtual COM
9 COMM_USBDISK USB Mass Storage
10 COMM_USBVCOM_C USB Virtual COM_CDC
DC
Example SetCommType(l, 0); // set COM1 to Direct RS-232
Return Value If successful, it returns 1.

On error, it returns O to indicate the port number or type is invalid.

Remarks This routine needs to be called BEFORE opening a COM port. The argument
passed to the 2" parameter depends on the actual interface in use:

(a) Pass COMM_DIRECT when it requires establishing an RS-232
connection, via cable or any kind of cradle.

(b) Pass COMM_USBVCOM_CDC or COMM_USBVCOM when it requires
establishing a USB virtual COM connection, via cable or any kind of cradle.

(c) Pass COMM_USBVCOM_CDC or COMM_USBVCOM when it requires
establishing a Fast VPort connection.

See Also GetlOPinStatus, open_com, SetACTone

Chapter 1 Communication Ports

1.4 OPEN AND CLOSE COM

1.4.1 FUNCTIONS

open_com

Purpose To enable a specific COM port and initialize communications.
Syntax U32 open_com (U32 com_port, U32 setting);
Parameters U32 com_port

COM port to be used. Refer to the COM Port Mapping table.
U32 setting
Setting for RS-232

0x00 BAUD_115200 Baud rate (bps)
Ox01 BAUD_57600

0x02 BAUD_38400

0x03 BAUD_19200

Ox04 BAUD_9600

0x05 BAUD_4800MN°®

0x00 DATA_BIT7 Data bits
0x08 DATA_BIT8

0x00 PARITY_NONE Parity
0x10 PARITY_ODD

0x30 PARITY_EVEN

0x00 HANDSHAKE_NONE
0x40 HANDSHAKE_CTS
OxcO HANDSHAKE_XON

Flow control method

Setting for Bluetooth
0x00 BT_SERIALPORT_SLAVE
0Ox03 BT_SERIALPORT_MASTER
0x04 BT_DIALUP_NETWORKING

Bluetooth SPP Slave
Bluetooth SPP Master
Bluetooth DUN

0x05
0x09

Setting for USB Mass Storage Device

BT_HID_DEVICE
BT_ACL_36XX

Bluetooth HID
Bluetooth ACL

0x00 SD_CARD & RAM_DISK SD card & RAM disk
Ox01 SD_CARD SD card
0x02 RAM_DISK RAM disk

0x03

SD_CARD & RAM_DISK

SD card & RAM disk

CipherLab C Programming Part Il

Example

Return Value

open_com(1l, 0x0b);

// open COM 1 to 19200,8 data bits, no parity and no handshake
open_com(4); // open COM4 for RFID virtual COM
If successful, it returns 1.

Otherwise, it returns O to indicate the port number is invalid.

Remarks This routine initializes the specific COM port, clears its receive buffer, stops any
ongoing data transmission, resets COM port status, and configures the COM
port according to the settings.

Note that the direct RS-232 port is usually COM1, and the virtual COM port
assigned for Bluetooth serial port profile is COM2. However, only direct RS-232
allows for flow control options.

See Also close_com, SetACTone, SetCommType

close_com

Purpose To terminate communications and disable a specified COM port.

Syntax U32 close_com (U32 port);

Parameters Refer to the COM Port Mapping table.

Example close_com(4); // close COM 4

Return Value

See Also

10

It always returns 1.

open_com

Chapter 1 Communication Ports

1.5 READ AND WRITE DATA

1.5.1 FUNCTIONS

clear_com

Purpose To clear the receive buffer of a specific COM port.

Syntax void clear_com (U32 port);

Parameters Refer to the COM Port Mapping table.

Example clear_com(1); // clear the receive buffer of COM 1

Return Value

None

Remarks This routine clears all the data stored in the receive buffer. It can be used to
avoid mis-interpretation when overrun or other error occurs.

See Also com_overrun

com_eot

Purpose To check whether there is any transmission in progress on COM1.
(eot = End Of Transmission)

Syntax U32 com_eot (U32 port);

Parameters Refer to the COM Port Mapping table.

Example while (Tcom_eot(1)); // wait till prior transmission completed

Return Value

write_com(1, “NEXT STRING™);
If transmission is completed, it returns 1.

Otherwise, it returns O.

com_overrun

Purpose To check whether overrun error occurs or not.
Syntax U32 com_overrun (U32 port);

Parameters Refer to the COM Port Mapping table.
Example if (com_overrun(l) > 0) clear_com(1);

Return Value

See Also

// if overrun, data stored in the buffer is not complete, clear them
all

If overrun occurs, it returns 1.
Otherwise, it returns O.

clear_com

11

CipherLab C Programming Part Il

read_com
Purpose To read one character from the receive buffer of a specific COM port.
Syntax U32 read_com (U32 port, U8 *c);
Parameters U32 port
COM port to be used. Refer to the COM Port Mapping table.
us8 *c
Pointer to the character returned.
Example char c;

Return Value

Remarks

See Also

12

if (read_com(1, c))

printf(“char %c received from COM 1”7, *c);
If successful, it returns 1.
Otherwise, it returns O to indicate the buffer is empty.

This routine reads one byte from the receive buffer and then removes it from
the buffer. However, if the buffer is empty, it will return O for no action is
taken.

nwrite_com, write_com

Chapter 1 Communication Ports

nwrite_com

Purpose To send a number of characters through a specific COM port.
Syntax U32 nwrite_com (U32 port, U8 *s, U32 count);
Parameters U32 port

COM port to be used. Refer to the COM Port Mapping table.
us8 *s

Pointer to the string being sent out.

U32 count

The number of characters to be sent.

Example char s[]={*Hello\n”’};
nwrite_com(1, s, 2); // send the characters “He” through COM1
Return Value If successful, it returns the character count. (For Bluetooth SPP, it returns 1.)

Otherwise, it returns O.

Remarks This routine sends the characters of a string one by one until the specified
number of characters are sent out.

13

CipherLab C Programming Part Il

write_com

Purpose
Syntax

Parameters

Example

Return Value

Remarks

14

To send a null-terminated string through a specific COM port.

U32 write_com (U32 port, U8 *s);

int port

COM port to be used. Refer to the COM Port Mapping table.

us8 *s

Pointer to the string being sent out.

char s[]={*Hello\n”’};
write_com(l, s); // send the string “Hello\n” through COM1
If successful, it returns the character count.

Otherwise, it returns O.

This routine sends a string through a specific COM port. If any prior
transmission is still in progress, it will be terminated and then the current
transmission resumes. The characters of a string will be transmitted one by one
until a NULL character is met. Note that a null string can be used to terminate
the prior transmission.

Chapter 2
TCP/IP COMMUNICATIONS

All TCP/IP stack routines called by programs are detailed as follows in this chapter.

IN THIS CHAPTER

2.1 Native Programming Interface ... nes. 16
2.2 Socket Programming Interfaceccovoiiviiiiiiiinninn... 20
2.3 BYLE SWaAPPING uutettetiit et ee et e et e e 44
2.4 Supplemental FUNCLIONSccoiiiiiiii e 46

15

CipherLab C Programming Part Il

2.1 NATIVE PROGRAMMING INTERFACE

2.1.1 BASICS

» Nopen() is used to establish connections. After the connection is successfully
established, Nopen() will return a connection number, which is used to identify this
particular connection in subsequent calls to other TCP/IP stack routines.

» Nclose() is used to close a specific connection.
» Nread() and Nwrite() are used to send and receive data on the network.

Note: Before reading and writing to the remote host, a connection must be established

or opened.

2.1.2 FUNCTIONS

Nclose

Purpose To close a connection.

Syntax S16 Nclose (S16 conno);

Parameters S16 conno
The connection to be closed. This connection number is a return value of
Nopen().

Example Nclose(conno);

Return Value If successful, it returns O.
On error, it returns a negative value to indicate a specific error condition.

See Also Nopen, socket_fin

16

Chapter 2 TCP/IP COMmunications

Nopen
Purpose To open a connection.
Syntax S16 Nopen (const S8 *remote_ip, const S8 *proto, S16 Ip, S16 rp, S16
flags);
Parameters const S8 *remote_ip
It can be one of these two forms:
> “n1.n2.n3.n4” for remote host IP;
> “*” for any host, passive open.
const S8 *proto
Protocol stack to be used, “TCP/IP” or “UDP/IP”.
S16 Ip
Local port number.
> If this is an active open (client), the local port is often an ephemeral port,
and a suitable random value can be obtained using Nportno() or set Ip to
0.
S16 rp
Remote port number.
) For a passive open (server), this value should be specified as 0, and any
remote port will be accepted for the connection.
S16 flags
(0] Normally, its value is set to O.
S _NOCON No connection for UDP.
S _NOWA Non-blocking open
IPADDR Remote_ip is binary (4 bytes)
Example /* Passive Open (Server) */

Return Value

Remarks

See Also

conno = Nopen(*“*”,“TCP/IP”, 2000, 0, 0);

/* Active Open (Client) */

char remote_ip[] = “230.145.22.4";

if ((conno = Nopen(remote_ip, “TCP/IP”, Nportno(), 2000, 0)) < 0)
printf(“Fail to connect to Host: %s\r\n”, remote_ip);

If successful, it returns the connection number. This is the handle for further
communication on the connection.

On error, it returns a negative value to indicate a specific error condition.

This routine is used for both active and passive opens. The behavior is
determined by the parameters supplied to the function.

> A passive open will wait indefinitely.

» An active open for TCP will return when the connection has been made, but
it times out in a couple of minutes if there is no answer.

» To check whether or not the connection has established, use
socket_isopen().

Nclose, Nportno, socket_ipaddr, socket_isopen

17

CipherLab C Programming Part Il

Nread
Purpose To read a message from a connection.
Syntax S16 Nread (S16 conno, S8 *buff, S16 len);
Parameters S16 conno
The connection to be accessed. This connection number is a return value of
Nopen().
S8 *buff
Pointer to a receive buffer.
S16 len
Maximum number of bytes to read; normally equals to the size of the buffer.
Example if (socket_hasdata(conno) > 0)

Return Value

Remarks

See Also

18

Nread(conno, buf, sizeof(buf));
If successful, it returns the number of bytes read.
Otherwise, it returns O to indicate the connection is closed by the remote end.
On error, it returns a negative value to indicate a specific error condition.
This routine reads a number of bytes (len) from a connection (conno) into a

specified buffer (buff).

» In blocking mode, this function will block until information is available to be
read, or until a timeout occurs. The timeout can be adjusted using
socket_rxtout().

» The application can avoid this blocking behavior by using socket_hasdata to
make sure there is data available before calling Nread().

» The protocol stack will try to compact all of the data receiving from the
remote side. This means the data obtained from Nread() maybe comes
from different packets.

Nwrite, socket hasdata, socket_rxtout

Chapter 2 TCP/IP COMmunications

Nwrite
Purpose To write a message to a connection.
Syntax S16 Nwrite (S16 conno, S8 *buff, S16 len);
Parameters S16 conno
The connection to be accessed. This connection number is a return value of
Nopen().
S8 *buff
Pointer to a send buffer.
S16 len
Maximum number of bytes to write.
Example if (socket_cansend(conno, strlen(buf)))

Return Value

Remarks

See Also

Nwrite(conno, buf, strlen(buf));
If successful, it returns the number of bytes written.
On error, it returns a negative value to indicate a specific error condition.

This routine writes a number of bytes (len) from a specified buffer (buff) to a
connection (conno).

» The protocol stack will keep the data and send them in background.
Normally, this routine will return immediately. However, it will take 1 to 8

seconds to send the data in the following cases:

Case 1 — In TCP, four packets have been sent, but never get any ACK.

The protocol stack will try to resend the packets until it times
out (after 8 seconds). The application can avoid this situation by
using socket_cansend to make sure the transmission is
available before calling Nwrite().

In UDP, the protocol stack does not get MAC ID of the remote
side. It will take 1 second to ask the remote side for MAC ID by

ARP.

Case 2 -

Nread, socket_cansend

19

CipherLab C Programming Part Il

2.2 SOCKET PROGRAMMING INTERFACE

2.2.1BASICS

Include File

#include <errno.h>

This header file, “errno.h”, contains the error code definitions. This file should normally be placed

under the “include” directory of the C compiler - C:\C_Compiler\INCLUDE\

Note: For relevant structures, please refer to the header file for mobile-specific library.

Connection-oriented Protocol (TCP)

For a connection-oriented socket, such as SOCK_STREAM, it provides full-duplex connection and
must be in a connected state before any data can be sent or received on it. A connection to another
socket is created with connect(). Once connected, data can be transferred using send() and
recv(). When a session has been completed, closesocket() must be performed.

Passive Open (Server)

socket()

bin

di)

listen()

\ Block and wait for . L

Connection Request

Active Open (Client)

| connection request accept()

F 3

from client

Cannect

rec

[
=

Data Transmission

Block until
connection is
accepted

¥ Y

Data Transmission

-

Disconnaction Requast

closesocket()

Discannact

closesocket()

20

L J

Chapter 2 TCP/IP COMmunications

Connectionless Protocol (UDP)

For a connectionless, message-oriented socket, datagrams can be sent to and received from a
specific connected peer using sendto() and recvfrom() respectively.

Passive Open (Server) Active Open (Client)
socket() socket()
¥
bind()
[Bt s ot o | . ¥ Data Transmission ¥
i Block and wait for
| data from client | recvirom() < sendto()
¥ Diata Transmission ¥
sendto() » | recvirom()

21

CipherLab C Programming Part Il

2.2.2 FUNCTIONS
accept
Purpose To accept a connection on a socket.
Syntax S16 accept (SOCKET s, struct sockaddr *name, S16 *namelen);
Parameters SOCKET s
Descriptor identifying a socket in a listening state.
struct sockaddr *name
Pointer to a sockaddr structure, receiving the remote IP address and port
number.
S16 *namelen
Pointer to an integer containing the length of name.
Example SOCKET listen_socket, remote_socket;

struct sockaddr_in local_name, remote_name;
int size_of_name;
listen_socket = socket(PF_INET, SOCK_STREAM, TCP);
if (listen_socket < 0) {
printf(“SOCKET allocation failed”);

memset(&local_name, 0, sizeof(local_name));

local _name.sin_family = AF_INET;

local_name.sin_port = htons(3000);

if (bind(listen_socket, (struct sockaddr*)&local_name,
sizeof(local_name)) < 0) {

printf(“Error in Binding on socket: %d”, listen_socket);

if (listen(listen_socket, 1)) {
printf(“Error in Listening on socket: %d”, listen_socket);

size_of _name = sizeof(remote_name);

remote_socket =

accept(listen_socket, (struct sockaddr*)&remote_name, &size_of_name);
if (remote_socket < 0) {

printf(“Error in accept on socket: %d”, listen_socket);

22

Return Value

Remarks

See Also

Chapter 2 TCP/IP COMmunications

send(remote_socket, “Hello”, strlen (“Hello™),0);

If successful, it returns a non-negative integer (> 0) as a descriptor for the
accepted socket.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

This routine is used by a server application to perform a passive open,
permitting a connection request from client.

> name is a result parameter that is filled in with the address of the
connecting entity, as known to the communications layer. The exact format
of the parameter is determined by the address family in which the
communication is occurring.

» namelen is a value-result parameter; it initially contains the amount of
space pointed to by name; on return, it will contain the actual length, in
bytes, of the address returned. Name is truncated if the buffer provided is
too small.

The socket will remain in the listening state until a client establishes a
connection with the port offered by the server.

» The connection is actually made with the socket that is returned by this
routine.

The original socket remains in the listening state, and can be used in a
subsequent call to this routine to provide additional connections.

Note that this is a blocking function. This routine will not return unless there is
error or a new connection is established. If normal program flow is mandatory
for the application or the application is going to accept multiple connection
requests. This routine must be called in a separate task.

connect, listen, select

23

CipherLab C Programming Part Il

bind
Purpose To bind a name to a newly created socket.
Syntax S16 bind (SOCKET s, struct sockaddr *name, S16 namelen);
Parameters SOCKET s
Descriptor identifying an unbound socket.
struct sockaddr *name
Pointer to a sockaddr structure containing the local IP address and listening
port to be bounded.
S16 namelen
Length of name.
Example SOCKET s;

Return Value

Remarks

See Also

24

struct sockaddr_in name;
s = socket(PF_INET, SOCK_STREAM, TCP);
if (s <0){

printf(“SOCKET allocation failed”);

memset(&name, 0, sizeof(name));

name.sin_family = AF_INET;

name.sin_port = htons(3000);

if (bind(s, (struct sockaddr*)&name, sizeof(name)) < 0) {

printf(“Error in Binding on socket: %d”, s);

If successful, it returns O.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

This routine binds the local IP address and listening port number information to
the socket specified.

» For connection-oriented sockets (passive open), this routine must be called
before calling listen() and accept().

» The socket specified must be a valid descriptor returned from a previous
call to the socket() routine.

» The local IP address specified can be left out as 0. The application can use
getsockname() to learn the address and port that has been assigned to it.

» If it is other than O, this routine will verify this information against the
actual local IP address of the local device.

connect, getsockname, listen, socket

Chapter 2 TCP/IP COMmunications

closesocket

Purpose To close a socket and release the connection block.
Syntax S16 closesocket (SOCKET s);
Parameters SOCKET s

Descriptor identifying a socket.

Example SOCKET s;

if (closesocket(s) < 0) {
printf(“closesocket fails on socket: %d”, s);

Return Value If successful, it returns 0.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

See Also shutdown, socket

25

CipherLab C Programming Part Il

connect
Purpose To initiate a connection on a socket.
Syntax S16 connect (SOCKET s, struct sockaddr *name, S16 namelen);
Parameters SOCKET s
Descriptor identifying a socket.
struct sockaddr *name
Pointer to a sockaddr structure containing the remote IP address and port
number.
S16 namelen
Length of name.
Example SOCKET s;

Return Value

Remarks

See Also

26

struct sockaddr_in name;
struct hostent *phostent;
s = socket(PF_INET, SOCK_STREAM, TCP);
if (s <0){
printf(“SOCKET allocation failed”);

memset(&name, 0, &sizeof(name));
name.sin_family = AF_INET;
name.sin_port = htons(3000);
phostent = gethostbyname(“serverl._cipherlab.com.tw’);
it (Iphostent) {
printf(*“Can not get IP from DNS server™);

memcpy(&name.sin_addr, phostent->h_addr_list[0], 4);
if (connect(s, (struct sockaddr*)&name, sizeof(name)) < 0) {

printf(“Error in Establishing connection’);

If successful, it returns O.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

This routine establishes a connection to a specified socket. It performs an
active open (client mode), allowing a client application to establish a
connection with a remote server. When it completes successfully, the socket is
ready to send/recv data.

accept, getpeername, getsockname, listen, select, socket

Chapter 2 TCP/IP COMmunications

fcntlsocket

Purpose To provide file control over descriptors.
Syntax S16 fcntlsocket (S16 fildes, S16 cmd, S16 arg);
Parameters S16 fildes

Descriptor to be operated on by cmd as described below.

S16 cmd

O_NDELAY Non-blocking

FNDELAY O_NDELAY Synonym

F_GETFL Get descriptor status flags. (arg is ignored)
F_SETFL Set descriptor status flags to arg.

int arg

Depending on the value of cmd, it can take an additional third argument arg.
Example (G
Return Value If successful, it returns a non-negative value depending on cmd.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

27

CipherLab C Programming Part Il

gethostbyname
Purpose To get the IP address of the specified host from DNS server.
Syntax struct hostent *gethostbname (const S8 *hnp);
Parameters const S8 *hnp

Pointer to a buffer containing a null-terminated hostname.
Example SOCKET s;

Return Value

Remarks

See Also

28

struct sockaddr_in name;
struct hostent *phostent;
s = socket(PF_INET, SOCK_STREAM, TCP);
if (s<0){
printf(“SOCKET allocation failed”);

memset(&name, 0, sizeof(name));
name.sin_family = AF_INET;
name.sin_port = htons(3000);
phostent = gethostbyname(“serverl.cipherlab.com.tw’);
if (Iphostent) {
printf(“Can not get IP from DNS server™);

memcpy(&name.sin_addr, phostent->h_addr_list[0], 4);
if (connect(s, (struct sockaddr*)&name, sizeof(name)) < 0)

{

printf(“Error in Establishing connection”);

If successful, it returns a pointer.
On error, it returns a NULL pointer.

This routine searches for information by the given hostname specified by the
character-string parameter hnp.

It then returns a pointer to a struct hostent structure describing an internet
host referenced by name.

» The IP address of DNS server can be automatically retrieved from DHCP
server, if DhcpEnable is set.

DNS_resolver

Chapter 2 TCP/IP COMmunications

getpeername
Purpose To get name of a connected peer.
Syntax S16 getpeername (SOCKET s, struct sockaddr *name, S16 *namelen);
Parameters SOCKET s
Descriptor identifying a socket.
struct sockaddr *name
Pointer to a sockaddr structure receiving the remote IP address and port
number.
S16 *namelen
Pointer to an integer containing the length of name.
Example SOCKET s;

Return Value

Remarks

See Also

struct sockaddr_in remote_nhame;
int size_of _name;
size_of _name = sizeof(remote_name);

if (getpeername(s, (struct sockaddr*)&remote_name, &size_of_name) < 0)

printf(“Can not get remote name info”);

If successful, it returns 0.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

This routine returns the name of the peer connected to socket s. It only can be
used on a connected socket.

> name is a result parameter that is filled in with the address of the
connecting entity, as known to the communications layer. The exact format
of the parameter is determined by the address family in which the
communication is occurring.

» namelen is a value-result parameter; it initially contains the amount of
space pointed to by name; on return, it will contain the actual length, in
bytes, of the address returned. name is truncated if the buffer provided is
too small.

connect, getsockname

29

CipherLab C Programming Part Il

getsockname

Purpose To get socket name.

Syntax S16 getsockname (SOCKET s, struct sockaddr *name, S16 *namelen);

Parameters SOCKET s

Descriptor identifying a socket.

struct sockaddr *name

Pointer to a sockaddr structure receiving the local IP address and port

number.

S16 *namelen

Pointer to an integer containing the length of name.

Example SOCKET s;
struct sockaddr_in local_name;
int size_of _name;
size_of _name = sizeof(local_name);
if (getsockname(s, (struct sockaddr*)&local_name, &size_of_name) < 0)
printf(“Can not get local name info™);

}

Return Value If successful, it returns O.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

Remarks This routine returns the current name for bound or connected socket s. It is
especially useful when a connect() call has been made without doing a bind
first.

> name is a result parameter that is filled in with the address of the
connecting entity, as known to the communications layer. The exact format
of the parameter is determined by the address family in which the
communication is occurring.

» namelen is a value-result parameter; it initially contains the amount of
space pointed to by name; on return, it will contain the actual length, in
bytes, of the address returned. Name is truncated if the buffer provided is
too small.

See Also bind, connect, getpeername

30

Chapter 2 TCP/IP COMmunications

getsockopt

Purpose To get options on a socket.

Syntax S16 getsockopt (SOCKET s, S16 level, S16 optname, S8 *optval, S16
*optlen);

Parameters SOCKET s

Descriptor identifying a socket.
S16 level

Level at which the option resides: SOL_SOCKET, IPPROTO_TCP, or
IPPROTO_IP

S16 optname

Socket option for which the value is to be retrieved.
For example, the following options are recognized —
> SOL_SOCKET

SO_DEBUG Enable recording of debugging information

SO_REUSEADDR Enable local address reuse

SO_KEEPALIVE Enable sending keep-alives

SO_DONTROUTE Enable routing bypass for outgoing messages

SO_BROADCAST Enable permission to transmit broadcast
messages

SO_BINDTODEVICE (...)

SO_LINGER Return the current Linger option
SO_OOBINLINE Enable reception of out-of-band data in band
SO_SNDBUF Get buffer size for sends

SO_RCVBUF Get buffer size for receives

SO_ERROR Get and clear error on the socket

SO_TYPE Get the type of the socket

» IPPROTO_TCP
TCP_MAXSEG Get TCP maximum-segment size
TCP_NODELAY Disable the Nagle algorithm for send coalescing
» IPPROTO_IP
IP_OPTIONS Get IP header options
S8 *optval
Pointer to a buffer where the value for the requested option is to be returned.
S16 *optlen

Pointer to an integer containing the size of the buffer, in bytes. On return, it
will be set to the size of the value returned.

31

CipherLab C Programming Part Il

Example

Return Value

Remarks

See Also

32

-9
If successful, it returns 0.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

This routine retrieves the current value for a socket option associated with a
socket of any type, in any state, and stores the result in optval. Although
options may exist at multiple protocol levels, they are always present at the
uppermost socket level. Options affect socket operations, such as the packet
routing and OOB data transfer.

» To manipulate options at the socket level, level is specified as
SOL_SOCKET.

» To manipulate options at any other level, the protocol number of the
appropriate protocol controlling the option is supplied.

setsockopt

Chapter 2 TCP/IP COMmunications

inet_addr

Purpose To convert an IP address string in standard dot notation to a network byte
order unsigned long integer.

Syntax U32 inet_addr (S8 *dotted);

Parameters S8 *dotted
An IP address in standard dot notation to be converted.

Example struct sockaddr_in name;

Return Value

name.sin_addr .s_addr = inet_addr((char *)*“192.168.1.1");

It returns a value of conversion.

See Also inet_ntoa

inet_ntoa

Purpose To convert an IP address stored in in_addr structure to a string in standard dot
notation.

Syntax S8 *inet_ntoa (struct in_addr addr);

Parameters struct in_addr addr
An in_addr structure containing the IP address to be converted.

Example struct sockaddr_in name;

Return Value

char ip_addr[16];
strcpy(ip_addr, inet_ntoa(name.sin_addr));

printf(“Remote IP: %s”, ip_addr);

It returns a pointer to the string.

See Also inet_addr
ioctlsocket
Purpose To provide controls on the I/0 mode of a socket.
Syntax S16 ioctlsocket (S16 fildes, S16 request, ...);
Parameters S16 fildes

Descriptor to open file.
Example -2

Return Value

Remarks

See Also

If successful, it returns 0.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

This routine manipulates the underlying device parameters of special files.

» In particular, many operating characteristics of character special files may
be controlled with ioctlsocket() requests.

fcntlsocket

33

CipherLab C Programming Part Il

listen
Purpose To listen for connections on a socket.
Syntax S16 listen (SOCKET s, S16 backlog);
Parameters SOCKET s
Descriptor identifying a bound, unconnected socket.
S16 backlog
Number of connections that will be held in a queue waiting to be accepted.
Example SOCKET s;

Return Value

Remarks

34

struct sockaddr_in name;
s = socket(PF_INET, SOCK_STREAM, TCP);
if (s <0){

printf(“SOCKET allocation failed”);

memset(&name, 0, sizeof(name));

name.sin_family = AF_INET;

name.sin_port = htons(3000);

if (bind(s, (struct sockaddr*)&name, sizeof(name)) < 0) {

printf(“Error in Binding on socket: %d”, s);

if (listen(s, D) {
printf(“Error in Listening on socket: %d”, s);

If successful, it returns O.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

This routine is used with connection-oriented socket type SOCK_STREAM; it is
part of the sequence of routines that are called to perform a passive open.
listen() puts the bound socket in a state in which it is listening up to a backlog
number of connection requests from clients.

> The socket is put into passive open where incoming connection requests
are acknowledged and queued pending acceptance by the accept() process.

» This routine is typically used by servers that can have more than one
connection request at a time. If a connection request arrives and the queue
is full, the client will receive an error.

> If there are no available socket descriptors, listen() attempts to continue to
function. When descriptors become available, a later call to listen() or
accept() will refill the queue to the current or most recent backlog, if
possible, and resume listening for incoming connections.

See Also

Chapter 2 TCP/IP COMmunications

> If listen() is called on an already listening socket, it will return success
without changing the backlog. Setting the backlog to 0 in a subsequent call
to listen() on a listening socket is not considered a proper reset, especially
if there are connections on the socket.

accept, connect

35

CipherLab C Programming Part Il

recv

Purpose To receive data from a connected or bound socket.
Syntax S16 recv (SOCKET s, S8 *buf, S16 len, S16 flags);
Parameters SOCKET s
Descriptor identifying a connected socket.
S8 *buf
Pointer to a buffer where data is received.
S16 len
Maximum number of bytes to be received.
S16 flags
MSG_0OOB Receive urgent data (out-of-bound data).

MSG_PEEK Receive data but do not remove it from the input
queue, allowing it to be read again on
subsequent calls (peek at incoming data).

Example SOCKET s;
char buf[1024];
int len;
if (socket_hasdata(s)) {
len = recv(s, buf, sizeof(buf), 0);
if (len < 0) {
printf(“recv fails on socket: %d”, s);

Return Value If successful, it returns a non-negative integer (= 0) indicating the number of
bytes received and stored into buffer.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

Remarks This routine reads incoming data from a specified buffer (buf) on a connected
socket.

» select() may be used to determine when more data arrives.

» The application can avoid this blocking behavior by using socket_hasdata()
to make sure there is data available before calling recv().

See Also recvfrom, select, send, socket _hasdata

36

Chapter 2 TCP/IP COMmunications

recvfrom
Purpose To receive data from a socket and stores the source address.
Syntax S16 recvfrom (SOCKET s, S8 *buf, S16 len, S16 flags, struct sockaddr
*from, S16 *fromlen);
Parameters SOCKET s
Descriptor identifying a connected socket.
S8 *buf
Pointer to a buffer where data is received.
S16 len
Maximum number of bytes to be received.
S16 flags
MSG_OOB Receive urgent data (out-of-bound data).
MSG_PEEK Receive data but do not remove it from the input
queue, allowing it to be read again on
subsequent calls (peek at incoming data).
struct sockaddr *from
Pointer to sockaddr structure that will hold the source address upon return.
S16 *fromlen
Pointer to an integer containing the length of from.
Example -

Return Value

Remarks

See Also

If successful, it returns a non-negative integer (> 0) indicating the number of
bytes received and stored into buffer.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

This routine reads incoming data from a specified buffer (buf), and captures
the address from which the data was sent. It is typically used on a
connectionless socket.

» If from is not a null pointer, the source address of data is filled in.

» fromlen is a value-result argument, initialized to the size of the buffer
associated with from, and modified on return to indicate the actual size of
the address stored there.

» select() may be used to determine when more data arrives.

> The application can avoid this blocking behavior by using socket_hasdata()
to make sure there is data available before calling recvfrom().

recv, select, send, socket_hasdata

37

CipherLab C Programming Part Il

select
Purpose To synchronize 1I/0 multiplexing.
Syntax S16 select (S16 nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
struct timeval *timeout);
Parameters S16 nfds
Descriptor identifying a set of sockets to be checked - from O through nfds
-1 in the descriptor sets are examined.
fd_set *readfds, *writefds, *exceptfds
Any of readfds, writefds, and exceptfds may be given as null pointers if no
descriptors are of interest.
struct timeval *timeout
Pointer to a zero-valued timeval structure, specifies the maximum interval to
wait for the selection to complete.
) System activity can lengthen the interval by an indeterminate amount.
» If it is a null pointer, the select blocks indefinitely.
Example (G

Return Value

Remarks

See Also

38

If successful, it returns the number of ready descriptors.
If the time limit expires, it returns 0.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

This routine examines the 1/0 descriptor sets whose addresses are passed in
readfds, writefds, and exceptfds to see if some of their descriptors are ready
for reading, are ready for writing, or have an exceptional condition pending,
respectively.

» The only exceptional condition detectable is out-of-band data received on a
socket.

» On return, this routine replaces the given descriptor sets with subsets
consisting of those descriptors that are ready for the requested operation.
It returns the total number of ready descriptors in all the sets.

The descriptor sets are stored as bit fields in arrays of integers.

» The following are provided for manipulating such descriptor sets. Their
behavior is undefined if a descriptor value is less than zero or greater than
or equal to FD_SETSIZE, which is normally at least equal to the maximum
number of descriptors supported by the system.

FD_SETSIZE 8 The maximum number of descriptors is 8.

FD_SET (n, p) ((p) -= fds_bits [(n) >=>3] |= (1 << ((n) & 7)))
FD_CLR (n, p) ((p) -= fds_bits [(n) >>3] &= —(1 << ((n) & 7)))
FD_ISSET (n, p) ((p) -> fds_bits [(n) >=>3] & (1 << ((n) & 7)))
FD_ZERO (p) memset ((void *) (p), 0, sizeof (*(p)))

accept, connect, recv, send

Chapter 2 TCP/IP COMmunications

send
Purpose To send data to a connected socket.
Syntax S16 send (SOCKET s, S8 *buf, S16 len, S16 flags);
Parameters SOCKET s
Descriptor identifying a connected socket.
S8 *buf
Pointer to a buffer where data is to be sent.
S16 len
Maximum number of bytes to be sent.
S16 flags
MSG_0OOB Send urgent data (out-of-bound data).
MSG_DONTROUTE Send data using direct interface (bypass
routing).
Example SOCKET s;

Return Value

Remarks

See Also

char buf[1024];
int len, tlen;
len = strlen(buf);
tlen = send(s, buf, len, 0);
if (tlen < 0) {
printf(“send fails on socket: %d”, s);

If successful, it returns a non-negative integer (= 0) indicating the number of
bytes sent.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

This routine writes outgoing data to a specified send buffer (buf) on a
connected socket.

» The whole data may not be sent at one time. Check the return value in
case the send buffer overflows.

» The application can avoid this blocking behavior by using socket_cansend()
to make sure there is data available before calling send().

recv, sendto, socket_cansend

39

CipherLab C Programming Part Il

sendto
Purpose To send data to a connected socket.
Syntax S16 sendto (SOCKET s, S8 *buf, S16 len, S16 flags, struct sockaddr *to,
S16 tolen);
Parameters SOCKET s
Descriptor identifying a connected socket.
S8 *buf
Pointer to a buffer where data is to be sent.
S16 len
Maximum number of bytes to be sent.
S16 flags
MSG_OOB Send urgent data (out-of-bound data).
MSG_DONTROUTE Send data using direct interface (bypass
routing).
struct sockaddr *to
Pointer to sockaddr structure containing the address of the target socket.
S16 tolen
Length of address indicated by to.
Example (G

Return Value

Remarks

See Also

40

If successful, it returns a non-negative integer (= 0) indicating the number of
bytes sent.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

This routine writes outgoing data to a specified send buffer (buf) on a
connected socket.

» The address of the targe is given by to with tolen specifying its size. The
length of the message is given by len. It is typically used on a
connectionless socket.

» The whole data may not be sent at one time. Check the return value in
case the send buffer overflows.

» The application can avoid this blocking behavior by using socket_cansend()
to make sure there is data available before calling send().

recvfrom, sendto, socket_cansend

Chapter 2 TCP/IP COMmunications

setsockopt
Purpose To set options on a socket.
Syntax S16 setsockopt (SOCKET s, S16 level, S16 optname, S8 *optval, S16
*optlen);
Parameters SOCKET s
Descriptor identifying a socket.
S16 level
Level at which the option resides: SOL_SOCKET, IPPROTO_TCP, or
IPPROTO_IP
S16 optname
Socket option for which the value is to be set.
For example, the following options are recognized -
> SOL_SOCKET
SO_DEBUG Enable recording of debugging information
SO_REUSEADDR Enable local address reuse
SO_KEEPALIVE Enable sending keep-alives
SO_DONTROUTE Enable routing bypass for outgoing messages
SO_BROADCAST Enable permission to transmit broadcast
messages
SO_BINDTODEVICE ¢.)
SO_LINGER Linger on close if unsent data is present
SO_OOBINLINE Enable reception of out-of-band data in band
SO_SNDBUF Set buffer size for sends
SO_RCVBUF Set buffer size for receives
» IPPROTO_TCP
TCP_NODELAY Disable the Nagle algorithm for send coalescing
> IPPROTO_IP
IP_OPTIONS Set IP header options
S8 *optval
Pointer to a buffer where the value for the option is specified.
S16 *optlen
Pointer to an integer containing the size of the buffer, in bytes.
Example (G
Return Value If successful, it returns O.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

41

CipherLab C Programming Part Il

Remarks

See Also

This routine sets the current value for a socket option associated with a socket
of any type, in any state. Although options may exist at multiple protocol
levels, they are always present at the uppermost socket level. Options affect
socket operations, such as the packet routing and OOB data transfer.

When manipulating socket options, the level at which the option resides and
the name of the option must be specified.

» To manipulate options at the socket level, level is specified as
SOL_SOCKET.

» To manipulate options at any other level, the protocol number of the
appropriate protocol controlling the option is supplied.

getsockopt

shutdown

Purpose
Syntax

Parameters

Example

Return Value

Remarks

See Also

42

To shut down part of a TCP connection.
S16 shutdown (SOCKET s, S16 how);
SOCKET s
Descriptor identifying a socket.
S16 how
(0] Shut down receive data path
1 Shut down send data path and send FIN (final)
2 Shut down both receive and send data path
SOCKET s;
if (shutdown(s, 2) < 0) {
printf(“shutdown fails on socket: %d”, s);

If successful, it returns 0.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

This routine shuts down part of a previously established TCP connection.

» Even if both receive and send data path are shut down, closesocket() must
be called to actually close the socket.

closesocket

Chapter 2 TCP/IP COMmunications

socket
Purpose To create a socket that is bound to a specific service provider.
Syntax SOCKET socket (S16 domain, S16 type, S16 protocol);
Parameters S16 domain
Protocol family; this should always be PF_INET or AF_INET.
S16 type, protocol
Depending on the socket type specified, the protocol to be used can be TCP or
UDP.
Type Protocol
SOCK_STREAM 6 (TCP) Stream socket
(0] Do not check protocol
SOCK_DGRAM 5 (UDP) Datagram socket
0 Do not check protocol
Example SOCKET s;
s = socket(PF_INET, SOCK_STREAM, 6);
if (s <0){

Return Value

Remarks

See Also

printf(“SOCKET allocation fails™);

If successful, it returns a non-negative integer (= 0) as a descriptor referencing
the socket.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

This routine creates an endpoint for communication and returns a descriptor.

» domain specifies a communications domain within which communication
will take place; this selects the protocol family which should be used.

» The socket has the indicated type, which specifies the semantics of
communication.

» protocol specifies a particular protocol to be used with the socket. Normally
only a single protocol exists to support a particular socket type within a
given protocol family. However, it is possible that many protocols may
exist, in which case a particular protocol must be specified in this manner.
The protocol number to use is particular to the “communication domain” in
which communication is to take place.

accept, bind, closesocket, connect, getpeername, getsockname, getsockopt,
ioctlsocket, listen, recv, recvfrom, select, send, sendto, setsockopt, shutdown

43

CipherLab C Programming Part Il

2.3 BYTE SWAPPING

2.3.1 FUNCTIONS
htonl
Purpose To convert an unsigned long integer from host byte order to network byte
order.
Syntax U16 htonl (U32 val);
Parameters U32 val
An unsigned long integer to be converted.
Example -2
Return Value It returns the value of conversion.
See Also ntohl
htons
Purpose To convert an unsigned (short) integer from host byte order to network byte
order.
Syntax U16 htons (U16 val);
Parameters U16 val
An unsigned integer to be converted.
Example struct sockaddr_in name;
s = socket(PF_INET, SOCK_STREAM, TCP);
if (s <0){
printf(“SOCKET allocation failed”);
}

memset(&name, 0, sizeof(name));
name.sin_family = AF_INET;
name.sin_port = htons(3000);

Return Value It returns the value of conversion.

See Also ntohs

ntohl

Purpose To convert an unsigned long integer from network byte order to host byte
order.

Syntax Ul16 ntohl (U32 val);

Parameters uU32 val

An unsigned long integer to be converted.

Example (G
Return Value It returns the value of conversion.
See Also htonl

44

Chapter 2 TCP/IP COMmunications

ntohs
Purpose To convert an unsigned (short) integer from network byte order to host byte
order.
Syntax U16 htohs (U16 val);
Parameters U16 val
An unsigned integer to be converted.
Example struct sockaddr_in name;
int port;
port = ntohs(hame.sin_port);
printf(“Remote Port: %d”, port);
Return Value It returns the value of conversion.
See Also htons

45

CipherLab C Programming Part Il

2.4 SUPPLEMENTAL FUNCTIONS

Other useful functions for obtaining additional information or setting control for a
connection are described below.

DNS_resolver

Purpose
Syntax

Parameters

Example

Return Value

To get the remote IP address by remote name.

S16 DNS_resolver (const S8 *remote_host, U8 *remote_ip);
const S8 *remote_host

Pointer to a buffer where the remote hostname is stored.

U8 *remote_ip

Pointer to a buffer where the remote host IP is returned.

char IP[4];

DNS_resolver(“www.cipherlab.com.tw”, 1P);

If successful, it returns 0. On error, it returns a negative value.

Remarks It is necessary to define the DNS server IP before calling this function.

See Also gethostbyname

Nportno

Purpose To get an ephemeral port number.

Syntax S16 Nportno (void);

Example if ((conno = Nopen(remote_ip, “TCP/IP”, Nportno(), 2000, 0)) < 0)

Return Value

Remarks

See Also

printf(“Fail to connect Host: %s\r\n”, remote_ip);
It always returns the port number.

This function generates a random local port number, which is used in a active
open call to the Nopen() function.

Nopen

socket_block

Purpose
Syntax

Parameters

Example
Return Value

Remarks

See Also

46

To set the connection for blocking operation.
S16 socket_block (S16 conno);

S16 conno

Connection number

socket_block(conno);

If successful, it returns 0. On error, it returns -1.
This function sets non-blocking operation back to blocking operation.

» Blocking operation is the default behavior for network functions. When in
blocking operation, calls to network functions will run to completion, or
return a timeout error if an associated time limit is run out.

socket_noblock

Chapter 2 TCP/IP COMmunications

socket_cansend

Purpose
Syntax

Parameters

Example

Return Value

See Also

To check if data can be sent immediately.

S16 socket_cansend (S16 conno, U16 len);
S16 conno

Connection number

U16 len

Number of bytes to write.

if (socket_cansend(conno, strlen(buf)))
Nwrite (conno, buf, strlen(buf));

If okay, it returns a non-zero value. Otherwise, it returns O.

Nwrite

socket_fin

Purpose
Syntax

Parameters

Example
Return Value

Remarks

See Also

To set the FIN flag on the next outgoing TCP segment.
S16 socket_fin (S16 conno);

S16 conno

Connection number

val = socket_fin(conno);

If successful, it returns 0. Otherwise, it returns -1.

The next TCP segment to be written, following a call to this function, will have

the FIN flag set in the TCP header.

» This is useful for shutting down a connection at the same time that the last
segment is sent. After that, call Nclose() to finish closing the connection.

Note that Nclose() will not send a FIN segment in this case.

Nclose

socket_hasdata

Purpose
Syntax

Parameters

Example

Return Value

See Also

To check if data is available to be read.
S16 socket _hasdata (S16 conno);
S16 conno
Connection number
if (socket_hasdata(conno))
Nread(conno, buf, sizeof(buf));
If available, it returns a non-zero value. Otherwise, it returns O.

Nread, recv

47

CipherLab C Programming Part Il

socket_ipaddr

Purpose
Syntax

Parameters

Example

Return Value

Remarks

See Also

To get the IP address of the remote end of a connection.

S16 socket_ipaddr (5§16 conno, U8 *ipaddr);

S16 conno

Connection number

U8 *ipaddr

Pointer to a buffer where the IP address is returned.

unsigned char ip[4];

socket_ipaddr(conno, ip);

printf(“Remote IP: %d.%d.%d.%d\r\n”, ip[0], ip[1]., ip[2], ip[3]);
If successful, it returns 0. On error, it returns -1.

This function copies the remote host IP address of the connection specified by
conno into a buffer indicated by ipaddr. No string terminator is appended by
this function.

getpeername

socket_isopen

Purpose
Syntax

Parameters

Example
Return Value

Remarks

See Also

To check if the remote end of a connection is open.

S16 socket_isopen (S16 conno);

S16 conno

Connection number

if (socket_isopen(conno)) printf(“connected!!”);

If connected, it returns a non-zero value. Otherwise, it returns O.

This function checks if the remote end has entered the ESTABLISHED state.
(TCP only)

Nopen

socket_keepalive

Purpose
Syntax

Parameters

Example
Return Value

Remarks

48

To set the dummy sending period for a connection.
S16 socket_keepalive (S16 conno, U32 val);
S16 conno
Connection number
uU32 val
Dummy sending period given in milli-second.
> Set to O to disable dummy sending.
val = socket_keepalive(conno, p);
It returns O.

In some special application, the remote end will auto-disconnect if it never
receives any packet in a certain period of time. This function will send an
empty packet to the remote end to avoid such problem. (TCP only)

Chapter 2 TCP/IP COMmunications

socket_noblock

Purpose
Syntax

Parameters

Example
Return Value

Remarks

See Also

To set the connection for non-blocking operation.
S16 socket_noblock (516 conno);

S16 conno

Connection number

socket_noblock(conno);

If successful, it returns 0. On error, it returns -1.

This function sets non-blocking operation. When in non-blocking operation,
calls to network functions, which normally have to wait for network activity to
be completed, will return the negative value EWOULDBLOCK when such a
condition is encountered.

socket_block

socket_push

Purpose
Syntax

Parameters

Example
Return Value

Remarks

See Also

To set the PSH flag on the next outgoing TCP segment.
S16 socket_push (S16 conno);

S16 conno

Connection number

val = socket_push(conno);

If successful, it returns 0. Otherwise, it returns -1.

The next TCP segment to be written, following a call to this function, will have
the PSH flag set in the TCP header.

» This is useful for indicating to the TCP on the remote system that all
internally buffered segments up through this segment should be delivered
to the application as soon as possible.

socket_fin

socket_rxstat

Purpose
Syntax

Parameters

Example

Return Value

See Also

To get the receive status for a connection.
S16 socket_rxstat (S16 conno);

S16 conno

Connection number

val = socket_rxstat(conno);

Return Value

Ox01 S _EOF FIN has been received.

Ox02 'S _UNREA Destination unreachable ICMP.

Ox04 S _FATAL Fatal error.

Ox08 S _RST Restart message received.

Ox10 S _SHUTRECV Receive has been shutdown (active, not by receiving

FIN).

socket_txstat

49

CipherLab C Programming Part Il

socket_rxtout

Purpose
Syntax

Parameters

Example

Return Value

To set the receive timeout for a connection.
S16 socket_rxtout (S16 conno, U32 val);
S16 conno

Connection number

uU32 val

Time interval given in milli-second.

val = socket_rxtout(conno, timeout);
If successful, it returns 0.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered. Refer to the header files for error codes.

socket_state

Purpose
Syntax

Parameters

Example

Return Value

See Also

To get the socket status for a connection.
S8 socket_state (S16 conno);

S16 conno

Connection number

val = socket_state(conno);

Return Value

1 ESTABLISHED
2 SYN_SENT

3 SYN_RECEIVED
4 LISTEN

5 CLOSING

socket_rxstat, socket_txstat

socket_testfin

Purpose
Syntax

Parameters

Example
Return Value

See Also

50

To check if the remote end has closed the connection. (TCP only)
S16 socket_testfin (S16 conno);

S16 conno

Connection number

if (socket_testfin(conno)) Nclose(conno);

If closed, it returns a non-zero value. Otherwise, it returns O.

Nclose

Chapter 2 TCP/IP COMmunications

socket_txstat

Purpose
Syntax

Parameters

Example

Return Value

See Also

To get the transmit status for a connection.

S16 socket_txstat (S16 conno);

S16 conno

Connection number

val = socket_txstat(conno);

Return Value

Ox01 S _PSH

0x08 'S_FIN_SENT
0x10 'S_FIN_ACKED
Ox20 S_PASSIVEOPEN

socket_rxstat

Push
FIN has been sent.

My FIN has been ACKED.

Originally a passive open. (for simultaneous active

open)

51

CipherLab C Programming Part Il

52

Chapter 3
WIRELESS NETWORKING

This section describes the functions related to wireless network configuration. These
functions are only applicable to the mobile computers according to their hardware
configuration. Refer to Appendix 111 — Examples.

> WLAN stands for IEEE 802.11b/g/n

> SPP stands for Serial Port Profile of Bluetooth

> DUN stands for Dial-Up Networking Profile of Bluetooth for connecting a modem

» DUN-GPRS stands for Dial-Up Networking Profile of Bluetooth for activating a mobile's
GPRS

» HID stands for Human Interface Device Profile of Bluetooth

Mobile Computer 8600 8630 8660

Bluetooth - Y Y

WLAN (802.11b/g/n) - 4 -

IN THIS CHAPTER

3.1 Network Configurationooeiiiiiiiii i iiaeeaeas 54
3.2 Initialization & Terminationooviiiiiiiiiiiiiii e 56
3.3 NEtWOIK STatUS eaaaaeeeees 59

53

CipherLab C Programming Part Il

3.1 NETWORK CONFIGURATION

Before bringing up (initializing) the network, some related parameters must be
configured. These parameters are grouped into a structure, NETCONFIG or BTCONFIG
or PPPCONFIG structure, and are saved in the system. They are kept by the system
during normal operations and power on/off cycles.

Refer to Appendix | — Net Parameters by Index.

3.1.1 IMPLEMENTATION

These parameters can be accessed through System Menu or an application program (via
GetNetParameter, SetNetParameter, and some specific routines as shown below).

Note: The parameters will be set back to the default values when updating kernel.

3.1.2 FUNCTIONS
GetNetParameter
Purpose To retrieve one networking configuration item from the system.
Syntax void GetNetParameter (void *return-value, S16 index);
Parameters See Appendix | — Net Parameters by Index.
Example S32 DhcpEnable;

unsigned char 1P[4];

DhcpEnable = 1;

SetNetParameter ((void*)&DhcpEnable, P_DHCP_ENABLE);

if (Netlnit() < 0) {

printf(“Initialization Fail™);

}

while (CheckNetStatus(NET_IPReady) != 1) OSTimeDly(5);

GetNetParameter((void*)&IP, P_LOCAL_IP);

printfF(“IP = %d.%d.%d.%d”, 1P[0], IP[1]. IP[2]. IP[3]);
Return Value None
Remarks This routine gets one network configuration item from the system.

> Make sure the size of return-value is suitable to the configuration type.

54

Chapter 3 Wireless Networking

SetNetParameter
Purpose To write one networking configuration item to the system.
Syntax void SetNetParameter (void *setting, S16 index);
Parameters See Appendix | — Net Parameters by Index.
Example S32 DhcpEnable;

us IP[4];

DhcpEnable = 1;

SetNetParameter ((void*)&DhcpEnable, P_DHCP_ENABLE);

if (Netlnit() <0) {
printf(“Initialization Fail™);

while (CheckNetStatus(NET_IPReady) != 1) OSTimeDly(5);

GetNetParameter((void*)&IP, P_LOCAL_IP);

printf(“IP = %d.%d.%d.%d”, IP[0], IP[1]. IP[2]. IP[3]):
Return Value None
Remarks This routine writes one network configuration item to the system.

» Use Netlnit() to initialize networking according to the configurations
written.

55

CipherLab C Programming Part Il

3.2 INITIALIZATION & TERMINATION

After the networking parameters are properly configured, an application program can call
NetInit() to initialize any wireless module (802.11b/g/n, Bluetooth, or GSM/GPRS) and
networking protocol stack.

» The wireless modules will not be powered until Netlnit() is called.

» When an application program needs to stop using the network, NetClose() must be
called to shut down the network as well as the modules (so that power can be saved).
To enable the network again, Netlnit() must be called again.

Note: Any previous network connection and data will be lost after calling NetClose().

3.2.1 OVERVIEW
Netlnit(OL) Enables 802.11b/g/n (WLAN)
8630 Netlnit(3L) Enables mobile's GPRS functionality via Bluetooth (DUN)
8660 Netlnit(3L) Enables mobile's GPRS functionality via Bluetooth (DUN)
3.2.2 FUNCTIONS
Netlnit
Purpose To initialize networking.
Syntax S16 Netlnit (U32 mode);
Parameters U32 mode
OL | WLAN_NETWORKING Enable 802.11b/g/n (WLAN)
1L BLUETOOTH_NETWORKING Reserved
3L | BT_GPRS_NETWORKING Enable mobile's GPRS functionality
via Bluetooth (DUN)
4L | CRADLE_PPP_NETWORKING Enable PPP connection via Modem
Cradle
5L |RS232_PPP_NETWORKING Enable PPP connection via direct

RS-232 (to a generic modem)

6L | CRADLE_MODE_NETWORKING Enable Ethernet connection via
Ethernet Cradle

7L | GPRS_CRADLE_NETWORKING Enable GPRS connection via GPRS
Cradle

56

Example

Return Value

Remarks

See Also

Chapter 3 Wireless Networking

struct NETSTATUS ns;
if (Netlnit() < 0) {
printf(“Initialization Fail™);

while (CheckNetStatus(NET_IPReady) != 1) OSTimeDly(5);
If successful, it returns O.
On error, it returns -1. (Usually it is caused by hardware problems.)

This routine initializes the wireless module and TCP/IP networking protocol
stack. Some part of the initialization is done in a background system task.
When this routine returns, the initialization process might not yet been done.

» It is necessary for the application to check the status of IPReady (see
NetStatus) before performing any networking operations.

CheckNetStatus, NetClose

57

CipherLab C Programming Part Il

NetClose

Purpose To close network connections.
Syntax S16 NetClose (void);
Example val = NetClose();

Return Value

Remarks

See Also

58

It returns O.
This routine closes network connections.

» Networking can be restarted by calling NetInit().
Netlnit

Chapter 3 Wireless Networking

3.3 NETWORK STATUS

Once networking has been initialized, information on networking status can be retrieved
from the system. This status information is grouped into a structure, NETSTATUS or
RADIOSTATUS or BTSTATUS, and the system will periodically update it.

User program must explicitly call CheckNetStatus() to get the latest status. Refer to
Appendix 111 — Net Status by Index.

3.3.1 FUNCTIONS
CheckNetStatus
Purpose To check on networking status from the system.
Syntax S16 CheckNetStatus (S16 index);
Parameters See Appendix 111 — Net Status by Index.
Example S32 DhcpEnable;
us 1P[4];
DhcpEnable = 1;
SetNetParameter((void*)&DhcpEnable, P_DHCP_ENABLE);
if (Netlnit() < 0) {
printfF(“Initialization Fail™);
¥
while (ICheckNetStatus(NET_IPReady)) OSTimeDly(10);
GetNetParameter((void*)&IP, P_LOCAL_IP);
printf(“IP = %d.%d.%d.%d”, 1P[0], IP[1]. IP[2]. IP[3]);
Return Value See values listed in NETSTATUS, RADIOSTATUS, BTSTATUS, and GSMSTATUS
structures.
See Also GetBTStatus, GetNetStatus

59

CipherLab C Programming Part Il

3.4 WISPR LIBRARY

The CL-WISPr library assists programmers in developing applications that can have the
8600 mobile computer automatically log in to a Wi-Fi hotspot. In practical terms, users
hotspots belonging to different
Consequently, users have to manually log in to the hotspot when they attempt to
connect to Internet. Applications designed with the CL-WISPr library routines can help

may visit premises equipped with Wi-Fi

users get rid of the hassle of login processes.

3.4.1 STRUCTURE

WISPrHandle

Purpose WISPr handler is used to save the WISPr authentication status, login URL, and
logoff URL after initial request and login processes.

Syntax typedef struct
{
int authState;
char loginURL[1024];
char loginURL[1024];
} WISPrHandle;

Parameters States of the WISPr authentication (int authState) are as follows:
Name Value Description
WISPR_AUTH_STATE_NONE 0x01 Initial state or after successful
logoff
WISPR_AUTH_STATE_WAIT 0x02 After first request, waiting for
login
WISPR_AUTH_STATE_PASSED 0x03 Login authentication passed
WISPR_AUTH_STATE_BYPASS 0x04 No need to perform WISPr
authentication because Internet
connection has been established
WISPrLoginReq
Purpose The ID and password for login authentication will be stored in the structure.
Syntax typedef struct
{

char id[128];
char pw[128];
} WISPrLoginReq;

60

WISPs.

3.4.2 METHOD

Chapter 3 Wireless Networking

WISPr_Request

Purpose

Syntax

Parameter

Example

Return Value

Remarks

See Also

Initialize a request to an arbitrary URL.

int WISPr_Request(WISPrHandle *wisprHdl,
char *reqURL,
int *errCode);

WISPrHandle *wisprHdl

The WISPr handle stores state and login/logoff URL. Success in request will get

the login URL.
char *reqURL
The arbitrary URL. Input “Null” to use default URL.

int *errCode

Return the WISPr error code. Further details please refer to 3.4.4 WISPr Error

Code.

WISPrHandle wisprHdl;
int error = 0;

memset(&wisprHdl, 0, sizeof(wisprHdl));

it (WISPr_Request(&wisprHdl, NULL, &error) == WISPR_STATUS_OK){
if (wisprHdl._authState == WISPR_AUTH_STATE_BYPASS)
printf(""Already Connected...\r\n");
if (wisprHdl.authState == WISPR_AUTH_STATE_WAIT){
printfF(""login URL:[%s]\r\n", wisprHdl.loginURL);
}
} else {
printfFC'WISPr not supported\r\n');
}
If successful, it returns WISPR_STATUS_OK = 0.
If network unreachable, it returns WISPR_NO_CONNECTION = -10.
Otherwise, it returns WISPR_STATUS_ERROR = -1.
The requested URL must be valid and reachable.

Success in request will get the <WISPAccessGatewayParam> XML in the
captive portal page; otherwise, this hotspot won’t be WISPr-capable.

WISPr_Login, WISPr_Logoff

61

CipherLab C Programming Part Il

WISPr_Login

Purpose

Syntax

Parameter

Example

Return Value

Remarks

See Also

62

WISPr login.

int WISPr_Login(WISPrHandle *wisprHdl,
WISPrLoginReq *wisprLoginReq,
int *errCode);

WISPrHandle *wisprHdl

The WISPr handle stores state and login/logoff URL. Success in login will get
the logoff URL.

WISPrLoginReq *wisprLoginReq
ID and password for authentication.
int *errCode

Return the WISPr error code. Further details please refer to 3.4.4 WISPr Error

Code.

/* call WISPr_Request to get the login URL */
WISPrLoginReq wisprLoginCre;
strcpy(wisprLoginCre.id, "0911654321@emome.net');
strcpy(wisprLoginCre._pw, '12345678");

if (WISPr_Login(&wisprHdl, &wisprLoginCre, &error) == WISPR_STATUS_OK)
{

printf(*'Logoff URL:[%s]---\r\n", wisprHdl._logoffURL);
} else {

printf(*'Login Failed.._\r\n");
}
If successful, it returns WISPR_STATUS_OK = 0.
If network unreachable, it returns WISPR_NO_CONNECTION = -10.
Otherwise, it returns WISPR_STATUS_ERROR = -1.

The ID format may vary depending on the WIFI provider system in different
countries.

WISPr_Request, WISPr_Logoff

Chapter 3 Wireless Networking

WISPr_Logoff

Purpose WISPr logoff.

Syntax int WISPr_Logoff(WISPrHandle *wisprHdl,
int *errCode);

Parameter WISPrHandle *wisprHdl

The WISPr handle stores state and login/logoff URL.
int *errCode

Return the WISPr error code. Further details please refer to 3.4.4 WISPr Error
Code.

Example
/* call WISPr_Login to get the logoff URL */

if (WISPr_Logoff(&wisprHdl, &error) == WISPR_STATUS_OK) {
printf(*'Logoff OK\r\n");

} else {
printf("'Logoff Failed...\r\n");

}

Return Value If successful, it returns WISPR_STATUS_OK = 0.
If network unreachable, it returns WISPR_NO_CONNECTION = -10.
Otherwise, it returns WISPR_STATUS_ERROR = -1.

See Also WISPr_Request, WISPr_Login

63

CipherLab C Programming Part Il

3.4.3 CUSTOMIZED METHOD

US_McDonalds

Purpose
Syntax

Example

Return Value

Remarks

See Also

Customized method to connect to McDonald’s free Wi-Fi in the U.S.
INT US_McDonalds()
it (1US_McDonalds())
printf(*'Agreement Passed\r\n");
else
printf('Agreement Failed\r\n");
If successful, it returns WISPR_STATUS_OK = 0.
If network unreachable, it returns WISPR_NO_CONNECTION = -10.
Otherwise, it returns WISPR_STATUS_ERROR = -1.

Only available for McDonald’s free Wi-Fi. It might be invalid if the system of
Wi-Fi provider changes.

US_BurgerKing, US_Starbucks

US_BurgerKing

Purpose
Syntax

Example

Return Value

Remarks

See Also

Customized method to connect to Burger King’s free Wi-Fi in the U.S.
INT US_BurgerKing()
it (MUS_BurgerKing())
printf(*'Agreement Passed\r\n");
else
printf('Agreement Failed\r\n');
If successful, it returns WISPR_STATUS_OK = 0.
If network unreachable, it returns WISPR_NO_CONNECTION = -10.
Otherwise, it returns WISPR_STATUS_ERROR = -1.

Only available for Burger King’s free Wi-Fi. It might be invalid if the system of
Wi-Fi provider changes.

US_McDonalds, US_Starbucks

US_Starbucks

Purpose
Syntax

Example

64

Customized method to connect to Starbucks free Wi-Fi in the U.S.
INT US_Starbucks()
if (1US_Starbucks())
printf(*'Agreement Passed\r\n");
else
printf(*'Agreement Failed\r\n");

Return Value

Remarks

See Also

Chapter 3 Wireless Networking

If successful, it returns WISPR_STATUS_OK = 0.
If network unreachable, it returns WISPR_NO_CONNECTION = -10.
Otherwise, it returns WISPR_STATUS_ERROR = -1.

Only available for Starbucks free Wi-Fi. It might be invalid if the system of
Wi-Fi provider changes.

US_McDonalds, US_BurgerKing

65

CipherLab C Programming Part Il

3.4.4 WISPR ERROR CODE

Name Value Meaning

WISPR_SERVER_INTERNAL_ERROR | -20 Access gateway internal error

WISPR_SERVER_PROTOCOL_ERROR | -21 Network Administrator Error: Does not have
RADIUS enabled

WISPR_SERVER_TIMEOUT -22 RADIUS server error/timeout

WISPR_SERVER_REJECT -23 Login failed (Access REJECT) or Authentication

pending

66

Chapter 4
|EEE 802.11B/G/N

IEEE 802.11b/g/n is an industrial standard for Wireless Local Area Networking (WLAN),
which enables wireless communications over a long distance. The speed of connection
between two wireless devices will vary with range and signal quality.

To maintain a reliable connection, the data rate of the 802.11b/g/n system will
automatically fallback as range increases or signal quality decreases.

802.11 Specification

Frequency Range: 2.4 GHz
Data Rate: 802.11b -1, 2, 5.5, 11 Mbps
802.119g - 6, 9, 12, 18, 24, 36, 48, 54 Mbps
802.11n — 6.5, 13, 19.5, 26, 39, 52, 58.5, 65 Mbps
Connected Devices: 1 for ad-hoc mode (No AP)

Multiple for infrastructure mode (AP required)

Protocol: IP/TCP/UDP

Max. Output Power: 100 mW

Spread Spectrum: DSSS/OFDM

Modulation: 802.11b - DBPSK, DQPSK, CCK

802.119g - BPSK, QPSK, 16-QAM, 64-QAM
802.11n - BPSK, QPSK, 16-QAM, 64-QAM
Standard: IEEE 802.11b/g/n, interoperable with Wi-Fi devices

Note: All specifications are subject to change without prior notice.

IN THIS CHAPTER
i Y W o1 (1 =S 68
A ¥ [o [0 X 0] i 1= 79

67

CipherLab C Programming Part Il

4.1 STRUCTURE

4.1.1 NETCONFIG STRUCTURE

Use GetNetParameter() and SetNetParameter() to change the settings by index.
Refer to Appendix | — Net Parameters by Index.

struct NETCONFIG {
S16 DhcpEnable;
U8 IpAddr[4];
U8 SubnetMask[4];
U8 DefaultGateway[4];
U8 DnsServer[4];
S8 DomainName[129];
S8 LocalName[33];
S8 SSID[33];
S16 SystemScale;
WLAN_FLAG Flag;
S16 WeplLen;
S16 DefaultKey;
U8 WepKey[4][14];
S8 EaplID[33];
S8 EapPassword[33];
S8 WPAPassphrase[64];
U8 WPApmMK[32];
U8 WPAchk[2];
U8 CurrentBSSID[6];
U8 FixedBSSID[6];
S16 iRoamingTxLimit_11b;
S16 iRoamingTxLimit_11g;
S16 RssiThreshold;
S16 RssiDelta;
S16 RoamingPeriod;
S8 ReservedByte[54];

68

Chapter 4

IEEE 802.11b/g/n

Parameter Default | Description Index
S16 DhcpEnable 1 0: disable DHCP 11
1: enable DHCP
U8 IpAddr[4] 0.0.0.0 |Local IP Address 1
U8 SubnetMask[4] 0.0.0.0 | Subnet Mask 2
U8 DefaultGateway[4] 0.0.0.0 |IP address of Default Gateway or router 3
U8 DnsServer[4] 0.0.0.0 |IP address of DNS server 4
S8 DomainName[129] Null Domain Name (Read only) 16
S8 LocalName[33] S/N Local hostname. 5
By default, it shows the serial number of
mobile computer.
S8 SSID[33] Null Service Set ID or AP name, which is used |6
for Remote Device association.
S16 SystemScale 2 Access Point Density, determines when the 14
mobile computer should look for another
AP that has better signal strength.
1: Low — SNR<20dB && RSSI<-75dBm
2: Medium — SNR<20dB && RSSI<-70dBm
3: High — SNR<25dB && RSSI<-70dBm
4: Custom — Tx Rate only
5. Custom — RSSI only
WLAN_FLAG Flag 0x19 See WLAN_FLAG Structure 12,17, 18,
21, 22, 30,
33, 39
S16 WeplLen 1 0: 64 bits Wep Key 13
(5 bytes to be configured for the WepKey
parameter)
1: 128 bits Wep Key
(13 bytes to be configured for the WepKey
parameter)
S16 DefaultKey 0 Use default Wep Key O 15
U8 WepKey[4][14] Null WEP Key O ~ 3 7-10
S8 EapID[33] Null ID used to associate to Cisco® APs 19
S8 EapPassword[33] Null Password used to associate to Cisco® APs | 20
S8 WPAPassphrase[64] Null WPA-PSK, WPA2-PSK (Pre-Shared Key 34
mode) — Passphrase to access the
network: 8—~63 characters
U8 WPApmMK[32] Null Stored Pre-Shared Key, generated based -

on SSID and Passphrase

69

CipherLab C Programming Part Il

Parameter Default | Description Index

U8 WPAchk[2] Null Checksum to detect if any changes made | ---
to SSID or Passphrase. (If yes, the
Pre-Shared Key will be re-generated.)

U8 CurrentBSSIDI[6] Null Current Basic Service Set ID 35

U8 FixedBSSID[6] Null Use AP’s MAC address as current Basic 36
Service Set ID

S16 iRoamingTxLimit_11b 2 This parameter only works with 37
“customized” system scale. Roaming starts
when the data transmission rate gets
lower than the specified value.

1: 1 Mbps
2: 2 Mbps
4: 5.5 Mbps
8: 11 Mbps

S16 iRoamingTxLimit_11g 8 This parameter only works with 38
“customized” system scale. Roaming starts
when the data transmission rate gets
lower than the specified value.

1: 1 Mbps

2: 2 Mbps

4: 5.5 Mbps
8: 11 Mbps
16: 6 Mbps
32: 9 Mbps
48: 12 Mbps
64: 18 Mbps
80: 24 Mbps
96: 36 Mbps
112: 48 Mbps
128: 54 Mbps

S16 RssiThreshold -70 Specify this parameter as the RSSI 91
threshold ranging from -50 to -90 dBm.
With the SystemScale set to 5, the mobile
computer will search for another AP with
better signal strength when RSSI of the
current AP is lower than this parameter.

S16 RssiDelta 5 When a new AP is found, the mobile 92
computer will connect to the new AP if the
RSSI defferential between the two APs is
equal to or higher than the specified
RssiDelta that can be set ranging from O to
20.

70

S16 RoamingPeriod 5

S8 ReservedByte[293] Null

4.1.2 WLAN_FLAG STRUCTURE

typedef struct {
U16 Reservedflag: 6;
U1l6 ScanTime: 1;
Ul16 WPA2_PSK: 1;
Ul6 WPA_PSK: 1;
U16 AdHoc: 1;
U16 Preamble: 2;
Ul6 PWRSave: 1;
Ul6 Eap: 1;
Ul6 Wep: 1;
U16 Authen: 1;

3} WLAN_FLAG;

Chapter 4 |EEE 802.11b/g/n

This parameter, ranging from 3 to 10 in
seconds, determines the time interval
between two searches for another AP.

Reserved

93

71

CipherLab C Programming Part Il

Parameter Bit Default | Description Index

Ul1l6 Authen 0 1 0: Share Key 12
1: Open System

ule Wep 1 0 0: WEP Key disable 17
1: WEP Key enable

Ul6 Eap 2 0 0: EAP disable 18
1: EAP enable

Ul6 PWRSave 3 1 0: Power-saving disable 21
1: Power-saving enable

U16 Preamble 4-5 1 O: reserved 22
1: long preamble
2: short preamble
3: both

U16 AdHoc 6 0 Ad-hoc mode 30
O: disable
1: enable

Ul6 WPA_PSK 7 0 0: WPA-PSK disable 33
1: WPA-PSK enable

Ul6 WPA2_PSK 8 0 0: WPA2-PSK disable 39
1: WPA2-PSK enable

U16 ScanTime 9 0] O0: WIFI Scan Time Normal 48
1: WIFI Scan Time Double

U16 Reservedflag 10-15 0 Reserved

72

4.1.3 NETSTATUS STRUCTURE

Chapter 4 |EEE 802.11b/g/n

User program must explicitly call CheckNetStatus() to get the latest status. Refer to
Appendix 111 — Net Status by Index.

struct NETSTATUS {

S16 State;
S16 Reserve[3];
S16 Channel;
S16 TxRate;
S16 IPReady;
¥
Parameter Description Value Index
S16 State Connection State 0 NET_DISCONNECTED 0
1 NET_CONNECTED
S16 Channel Current Channel 1~-11 4
Number
S16 TxRate Current Transmit 802.11b/g 802.11n 5
Rate 1 1 Mbps 257 MCS O
2 2 Mbps 258 MCS 1
4 5.5 Mbps 260 MCS 2
8 11 Mbps 264 MCS 3
16 6 Mbps 268 MCS 4
32 9 Mbps 272 MCS 5
48 12 Mbps 288 MCS 6
64 18 Mbps 304 MCS 7
80 24 Mbps
96 36 Mbps
112 48 Mbps
128 54 Mbps
S16 IPReady Mobile Computer — -1 Errorot 6
IP Status for both |0 Not Ready
ey sy

Note: If CheckNetStatus(IPReady) returns -1, it means an abnormal break occurs during
PPP, DUN-GPRS, or GPRS connection. Such disconnection may be caused by the
mobile computer being out of range, improperly turned off, etc.

73

CipherLab C Programming Part Il

4.1.4 RADIOSTATUS STRUCTURE

User program must explicitly call ChecRadioStatus() to get the latest status. Refer to
Appendix Il — Net Status by Index.

struct RADIOSTATUS {
S16 SNR;
S16 RSSI;
S16 NoiseFloor;

¥
Parameter Description Value Index
S16 SNR Signal to Noise 0~20 Poor 14
ratio (dB) 20 ~ 30 Fair
30 — 40 Good
over 40 Very good
S16 RSSI Received Signal 0 ~ -60 Strong 15
?;rBen:)gth Indication 60 — -75 Moderate
<-75 Weak
S16 NoiseFloor | Noise Floor (dBm) |0 —~ -92 High noise 16

-92 — -95 Moderate

< -95 Low noise

74

Chapter 4 |EEE 802.11b/g/n

4.1.5 WIFI HOTSPOT SEARCH STRUCTURE

This structure is provided for the mobile computer to scan for the Wi-Fi hotspots within
range.

The user program must exactly call WIFIScan(WifiDev *APList, S32 Count) to get
the Wi-Fi hotspot.

typedef struct {

U8 SSID[32];

U8 BSSID[6]; //MACID of WIFI device

S8 Rssi; //dBm

U8 Channel;

U8 BandType; // 10: 802.11b/g/n or n only
// 2:802.11b/g or g only
// 1:802.11b

U8 BSSType; // 0: Ad-Hoc, 1:Infrastructure

union{
U8 Byte;
struct{
U8 wep :1;
U8 wpa 11;

U8 wpa2 :1;

U8 reserved:5;

}Bit;
}Security;
}WifiDev;
Parameter Description Value
U8 SSID[32] Service Set ldentifier
U8 BSSID[6] Basic Service Set ID (MAC ID

of WI-FI device)

75

CipherLab C Programming Part Il

char Rssi

U8 Channel
U8 BandType

U8 BSSType

Security

76

Received Signal Strength
Indication (dBm)

based on -100dBm
e.g. value 40 = -60 dBm
1—-11

10: 802.11b/g/n or n only, 2:
802.11b/g or g only, 1:802.11b

0: Ad-Hoc, 1:Infrastructure

wep bit=1, WEP encryption is enabled
in the device

wep bit=0, WEP encryption is disabled
in the device

wpa bit=1, WPA encryption is enabled
in the device

wpa bit=0, WPA encryption is disabled
in the device

wpa2 bit=1, WPA2 encryption is
enabled in the device

wpa2 bit=0, WPA2 encryption is
disabled in the device

Chapter 4

4.1.6 WI-FI PROFILE STRUCTURE

IEEE 802.11b/g/n

This structure is provided for the mobile computers to access Wi-Fi profiles. There are
total 4 profiles to save Wi-Fi connection settings. Use GetNetParameter() and
SetNetParameter() to access these profiles. Refer to AppendixI-Net Parameters by Index

typedef struct{
U8 SSID[32];
U8 BSSType;
U8 Security;
union{
struct WEP{
S8 Weplen;
S8 DefaultKey;
S8 WepKey[4][14];
YWEP;
struct EAP{
S8 EaplID[33];
S8 EapPassword[33];
}EAP;
S8 WPAPassphrase[64];
}Keys;

IWIFIPROFILE;//size=100 Bytes

Parameter Description Value
U8 SSID[32] Service Set ldentifier
U8 BSSType Basic Service Set 0: Ad-hoc

1: Infrastructure

77

CipherLab C Programming Part Il

U8 Security Authentication and Encryption O: None
Type 1: Open System Authentication+WEP
2: Shared Key Authentication+WEP
3: WPA-Pre-shared Key
4: WPA2-Pre-shared Key
5: EAP
S8 WeplLen Length of WEP Key 0: 64 bits
1: 128 bits
S8 DefaultKey Default WEP Key
S8 WepKey[4][14] WEP Key 0—~3
S8 EapID ID used to associate to Cisco
APs
S8 EapPassword[33] Password used to associate to
Cisco APs
S8 WPAPassphrase[64] WPA-PSK, WPA2-PSK.

Passphrase to access the
network: 8—~63 characters

Example:

U8 buf[100];
WIFIPROFILE *ptr;
S8 temp[12]=""1234567890";

//To store current WIFI connection setting to Profilel
SetNetParameter((void*)0, P_PROFILE_1);

//Get Profilel to edit
GetNetParameter(buf, P_PROFILE_1);

ptr=(WIFIPROFILE*)buf;
strcpy(ptr-> Keys._WPAPassphrase, temp);

//Save this setting to Profile2
SetNetParameter(buf, P_PROFILE_2);

//Use Profile2 to create a WIFI connection
SetNetParameter((void*)0, P_APPLY_PROFILE_2);

Netlnit (OL); // Initial Net
while (1)
iT (CheckNetStatus (NET_IPReady))
break;
if (getchar () == KEY_ESC) // press ESC key

return;

78

Chapter 4 |EEE 802.11b/g/n

4.2 FUNCTIONS

4.2.1 SCANNING FOR Wl HOTSPOTS

WIFIScan
Purpose To detect any Wi-Fi hotspot within range
Syntax S32 WIFIScan(WifiDev *APList, S32 Count);
Parameters WifiDev *APList

Pointer to WifiDev where the scan results are stored.

S32 Count

Maximum number of scan results. The maximum value is 10.
Example static WifiDev WifiDevList[8];

Return Value
Remarks

See Also

static int DevNum=0;

DevNum=WIF1Scan(WifiDevList, 8);
The amount of the Wi-Fi hotspots detected

» The function is executable on-line without breaking the current connection.

79

CipherLab C Programming Part Il

80

Chapter 5
BLUETOOTH

Below are available libraries that support DUN-GPRS mode. Refer to Appendix Il —
Examples.

Hardware Configuration

8600 Series 8630 — Bluetooth + 802.11b/g/n
8660 — Bluetooth

Bluetooth Specification

Frequency Range: 2.4 GHz

Profiles: SPP, DUN, HID

Spread Spectrum: FHSS

Modulation: GFSK

Standard: Bluetooth version 4.0 Dual Mode (2.1+EDR/BLE)

Note: All specifications are subject to change without prior notice.

IN THIS CHAPTER

5.1 Bluetooth Profiles Supportedccooiiiiiiiiiiiiie 82
LTS 1 U Lo (| /= S 83
LSRG I ¥ [o 1 1 Lo o 1= N 87

81

CipherLab C Programming Part Il

5.1 BLUETOOTH PROFILES SUPPORTED

Serial Port Profile (SPP)

For ad-hoc networking, without going through any access point.

Dial-Up Networking Profile (DUN)

For a mobile computer to make use of a Bluetooth modem or mobile phone as a wireless modem.
Also, it can be used to activate the GPRS functionality on a mobile phone.

Human Interface Device Profile (HID)

For a mobile computer to work as an input device, such as a keyboard for a host computer.

CipherLab ACL Packet Data

For a mobile computer to connect to a 36xx device.

82

Chapter 5 Bluetooth

5.2 STRUCTURE

5.2.1 BTCONFIG STRUCTURE

Use GetNetParameter() and SetNetParameter() to change the settings by index.
Refer to Appendix | — Net Parameters by Index.

typedef struct {
S8 BTRemoteName[20];
U8 BTPINCode[16];
U8 BTLinkKey[16];
BTSearchinfo Dev[8]; //8*51=408
BT_FLAG Flag; //flag setting
U8 BTGPRSAPname[20]; //the GPRS AP name for BT-GPRS connection
U8 ACL36xx[16];
U8 ReservedByte[204];

} BTCONFIG;
Parameter Default | Description Index
S8 BTRemoteName[20] Null ID used for Remote Device association 25
U8 BTPINCode[16] Null PIN Code for pairing (usually in Slave mode) 27
U8 BTLinkKey[16] Null Link Key generated by pairing -
BTSearchlinfo Dev[8] Null See BTSearchinfo Structure 40-47
BT_FLAG Flag - See BT_FLAG Structure 26, 28, 29
U8 BTGPRSAPname[20] Null Name of Access Point for Bluetooth DUN-GPRS 32
connection

U8 ACL36xx[16] Null Used by CipherLab ACL packet -
U8 ReservedByte[204] Null Reserved -

83

CipherLab C Programming Part Il

5.2.2 BT_FLAG STRUCTURE

typedef struct {
unsigned int Reservedflag: 13;
unsigned int BTBroadcastON: 1;
unsigned int BTSecurity: 1;
unsigned int BTPWRSaveON: 1;

} BT_FLAG;

Parameter Bit Default ' Description Index

Ul6 BTPWRSaveON 0 1 Bluetooth Power-saving 29
O: disable
1: enable

Ul6 BTSecurity 1 0 Bluetooth Security 26
O: disable
1: enable

U16 BTBroadcastON 2 1 Bluetooth broadcasting 28
O: disable
1: enable

U16 Reservedflag 3-15 0 Reserved -

Note: When Bluetooth security is enabled without providing a pre-set PIN code, dynamic
input of PIN code is supported.

84

Chapter 5 Bluetooth

5.2.3 BTSEARCH STRUCTURE

typedef struct {
U8 Machine;
U8 ADDR[6];
U8 Name[32];
U8 PINCode[16];
U8 LinkKey[16];
} BTSearchlinfo;

size = 71 bytes

Parameter Default | Description Index

U8 Machine 0 Host profile indication 40-47
: empty

: AP

: SPP

: DUN

o A W P+, O

: Reserved
7: FTP

(If bit 7=1, it means the device is currently
connected.)

U8 ADDR[6] Null Host MAC ID

U8 Name[32] Null HostName

U8 PINCode[16] Null PIN code for pairing (Master mode)
U8 LinkKey[16] Null Link Key generated by pairing

85

CipherLab C Programming Part Il

5.2.4 BTSTATUS STRUCTURE

User program must explicitly call CheckNetStatus() to get the latest status. Refer to

Appendix Il — Net Status by Index.

typedef struct {

S16 State;
S16 Signal;
S16 Reserved[10];
} BTSTATUS;
Parameter Description Value Index
S16 State Connection State 0 BT_DISCONNECTED 7
1 BT_CONNECTED
S16 Signal RSSI Signal Level -10 ~ -6 Weak 8
-6 ~5 Moderate
over 5 Strong
S16 Reserved Null --- -—-
Reserved[10]

86

Chapter 5 Bluetooth

5.3 FUNCTIONS

Note: For the stability and compatibility concern, it is recommended to use
GetNetParameter(), SetNetParameter(), and CheckNetStatus().

5.3.1 FREQUENT DEVICE LIST

Through the pairing procedure, the mobile computer is allowed to keep record of the
latest connected device(s) for different Bluetooth services, regardless of authentication
enabled or not. Such record is referred to as “Frequent Device List”.

Service Type In Frequent Device List

Serial Port SPP Only 1 device is listed for quick connection.
Dial-up Networking DUN Only 1 device is listed for quick connection.
Human Interface Device HID Only 1 device is listed for quick connection.

Refer to 5.2.3 BTSEARCH Structure for details.

Get Frequent Device List

The length of Frequent Device List by calling GetNetParameter() is 51 characters:
BTSearchInfo DeviceA;

GetNetParameter(&DeviceA, 40);

Set Frequent Device List

To enable quick connection to a specific device without going through the inquiry and pairing
procedure, a user-definable Frequent Device List can be set up by calling SetNetParameter().

> If there is an existing Frequent Device List generated from the inquiry and pairing procedure, it
then may be partially or overall updated by this, and vice versa.

> There are five fields: Service Type, MAC ID, Device Name, PIN Code, and Link Key. If
authentication is disabled, you only need to specify the first three fields. Otherwise, the PIN
code field needs to be specified for generating Link Key.

87

CipherLab C Programming Part Il

5.3.2 INQUIRY

To complete the pairing procedure, it consists of two steps: (1) to discover the Bluetooth
devices within range, and (2) to page one of them that provides a particular service.
These are handled by BTInquiryDevice() and BTPairingTest() respectively.

» Once the pairing procedure is completed and the list is generated, next time the
mobile computer will automatically connect to the listed device(s) without going
through the pairing procedure.

BTInquiryDevice

Purpose
Syntax

Parameters

Example

Return Value

Remarks

See Also

88

To discover any nearby Bluetooth devices.
S16 BTInquiryDevice (BTSearchlnfo *Info, S16 max);
BTSearchlnfo *Info

Pointer to BTSearchInfo structure where the information of paired devices is
stored.

S16 max
Maximum number of Bluetooth devices that can be inquired.
BTSearchinfo Info[4];
S16 Rst;
Rst = BTInquiryDevice(Info, 4);
if (Rst) {
printf(“Find %d devices in range”, Rst);

It returns information on the devices discovered. Refer to 5.2.3 BTSEARCH
Structure structure.

This routine gets information on Bluetooth devices nearby.
> It will take about 20 seconds to find devices.

BTPairingTest

Chapter 5 Bluetooth

5.3.3 PAIRING

According to the search results for nearby Bluetooth devices, the application can then try
to pair with any of the remote devices by calling BTPairingTest().

BTPairingTest

Purpose To pair with one Bluetooth device.
Syntax S16 BTPairingTest (BTSearchlnfo *Info, S16 TargetMachine);
Parameters BTSearchInfo *Info

Pointer to BTSearchlInfo structure where the information of paired devices is
stored.

S16 Targetmachine

3 BTSerialPort Bluetooth Serial Port service (= SPP)

4 BTDialUpNetworking Bluetooth Dial-up Networking service (= DUN)
Example BTSearchinfo Info[4];

S16 Rst;

Rst = BTInquiryDevice(Info, 4);
if (Rst) {
printf(“Find %d devices in range”, Rst);
Rst = BTPairingTest(&Info[0], BTSerialPort);
if (Rst) printf(“Pair OK”);

else printf(“Pair Fail™);

Return Value If successful, it returns 1.
On error, it returns 0.

Remarks This routine tries to pair with one Bluetooth device with matching type of
service (SPP, DUN or FTP) specified by TargetMachine.

» Once pairing successfully, the MAC ID, PIN Code, and Link Key of this
remote device will be updated to the Frequent Device List.

See Also BTInquiryDevice

89

CipherLab C Programming Part Il

5.3.4 USEFUL FUNCTION CALL

We also provide some simple function calls for pairing with a Bluetooth device easily.

BTPairingTestMenu

Purpose To create a menu and try to pair with one Bluetooth device.

Syntax void BTPairingTestMenu (void);

Example See sample code.

Return Value None

Remarks Once pairing successfully, the MAC ID of this remote device will be updated to

the Frequent Device List.

See Also BTPairingTest, FreqDevListMenu

FregDevListMenu

Purpose To create a menu (Frequent Device List) listing all the devices that the mobile
computer frequently connects to.

Syntax void FregDevListMenu (void);

Example See sample code.

Return Value None

See Also BTPairingTestMenu

BTInquiryDevice() <—

BTPairingTestMenu() '
BTPairingTest() ‘

o>

Yes
Y

FregDevListMenu() | Add to Freq. Dev. List ‘

90

Chapter 5 Bluetooth

Sample Code

#include <8600lib.h>

#include <ucos.h>

static const MENU_ENTRY PAIRING_ENTRY;
static const MENU_ENTRY DEVICELIST_ENTRY;

MENU SPP_MENU =

{2, 1, 0, “Bluetooth”, {(void*)&PAIRING_ENTRY, (void*)&DEVICELIST ENTRY}};

static const MENU_ENTRY PAIRING_ENTRY = {0, 1, “1 Pairing”, BTPairingTestMenu, 0};
static const MENU_ENTRY DEVICELIST_ENTRY = {0, 2, “2 Dev. List”, FreqDevListMenu, 0};
main()

{

while (1) prc_menu((void*)&SPP_MENU);

¥

91

CipherLab C Programming Part Il

5.3.5 ACL FUNCTIONS
Get36xxParameter
Purpose To get a parameter of 3610.
Syntax void Get36xxParameter (void *nc, U32 index);
Parameters void *nc

A parameter for 3610.

U32 index

Index number of the parameter (see the table below).
Example us SN[9];

Return Value

See Also

Index

Get36xxParameter (SN, P_36XXSN);
None

Set36xxParameter

Data Type |Default Description

0 P_SET_TO_36XX

1 P_ACL_TYPE

Update parameter to 36xx. It's valid only
when the Bluetooth connection between
terminal and 36xx has been established.

u8 95 The type of Bluetooth for ACL
95:ACL_CDCVCOM
96:ACL_VCOM
97:ACL_PCAT_US
98:ACL_PCAT_French
99:ACL_PCAT_German
100:ACL_PCAT _Italy
101:ACL_PCAT_Swedish
102:ACL_PCAT_Norwegian
103:ACL_PCAT_UK
104:ACL_PCAT_Belgium
105:ACL_PCAT_Spanish
106:ACL_PCAT_Portuguese
107:ACL_PS55A01_2_ Japanese
108:ACL_USER_Defined_KBD
109:ACL_PCAT_Turkish
110:ACL_PCAT_Hungarian
111:ACL_PCAT_ Swiss
112:ACL_PCAT_Danish

2 P_INTER_CHAR_DELAY U8 0 Inter-Character Delay (0—~254 ms)

92

3 P_36XXSN

4 | P_DIGITS_TRANS

5 P_CAPSLOCK_TYPE

6 P_DIGIS_LAYOUT

7 P_ALPHABET_TRANS

8 | C_CAPSLOCK_MODE

9 P_ALT_COMPOSE

11 P_KBD_LAYOUT

12 P_HID_CHAR_TRANS

us[9]

us

us

us

us

us

us

us

us

S/N

Chapter 5 Bluetooth

To set the serial number of 3610 for
connection through the Bluetooth

Digits Transmission
0: AlphaNum Key

1: Numeric Key
Capital Lock Type

O0: Normal

2: Capital Lock

3: Shift Lock

Digital Layout.

0: Normal

2: Lower Row

3: Upper Row
Alphabets Tranmission
0: Case-sensitive

1: Ignore Case
Capital Lock

0: Capital Lock OFF
1: Capital Lock ON

2: Auto Detect

Alt Compose

0: disable Alt Sending
1: enable Alt Seding
Alphabets Layout

0: Normal

1: AZERTY

2: QWERTZ

HID Character Transmit Mode
0: Batch Processing

1: By Character

93

CipherLab C Programming Part Il

Set36xxParameter
Purpose To set a parameter of 3610 through Bluetooth.
Syntax S8 Set36xxParameter (void *nc, U32 index);
Parameters void *nc

A parameter for 3610.

U32 index

Index number of the parameter.
Example us SN[9], P;

Return Value

See Also

94

memcpy (SN, “BS6065535”, 9);
Set36xxParameter (SN, P_36XXSN);
P=ACL_VCOM;

Set36xxParameter(&P, P_BTACL_Type);

Result Return Value
Setting successful 1

Setting failed 0

Can’t be set (not connected or 3610 not ready) -1 (*1)
Wrong parameter -2

*1: Not connected or 3610 not ready

Get36xxParameter

Chapter 5 Bluetooth

95

Chapter 6
USB CONNECTION

Applications are to read and/or write data via a virtual COM port, namely, COM5. The
communication types, COMM_USBHID, COMM_USBVCOM, COMM_USBVCOM_CDC and
COMM_USBDISK, should be assigned by calling SetCommType() before use.

Refer to Appendix Il — Examples.

IN THIS CHAPTER

ST R @ LYY Y 11T N 98
8.2 SUIUCTUNE ..ttt e aaeaaeeenns 99

97

CipherLab C Programming Part Il

6.1 OVERVIEW

6.1.1 USB HID

The mobile computer can be set to work as an input device, such as a keyboard for a
host computer.

6.1.2 USB VIRTUAL COM

USB Virtual COM

When USB Virtual COM is in use, the mobile computer is set to use one Virtual COM port for all
(USB_VCOM_FIXED) whenever connecting more than one mobile computer to PC via USB. This
setting requires you to connect one mobile computer at a time, and will facilitate configuring a
great amount of mobile computers via the same Virtual COM port (for administrators’ or factory
use). If necessary, you can have it set to use variable Virtual COM port (USB_VCOM_BY_SN), which
will vary by the serial number of each different mobile computer.

USB Virtual COM_CDC

When USB Virtual COM_CDC is in use, the mobile computer is set to use one Virtual COM_CDC port
for all (USB_VCOM_FIXED) whenever connecting more than one mobile computer to PC via USB.
This setting requires you to connect one mobile computer at a time, and will facilitate configuring a
great amount of mobile computers via the same Virtual COM_CDC port (for administrators’ or
factory use). If necessary, you can have it set to use variable Virtual COM_CDC port
(USB_VCOM_BY_SN), which will vary by the serial number of each different mobile computer.

6.1.3 USB MASS STORAGE DEVICE

When the mobile computer is equipped with SD card and connected to your computer via
the USB cable, it can be treated as a removable disk as long as it is configured properly
through programming or System Menu.

98

6.2 STRUCTURE

Chapter 6 USB Connection

6.2.1 USBCONFIG STRUCTURE

Use GetNetParameter() and SetNetParameter() to change the settings by index.
Refer to Appendix | — Net Parameters by Index.

struct USBCONFIG {

USB_FLAG1 Flagl;
U8 ReservedByte[126];

¥
Parameter Default | Description Index
USB_FLAG1 Flagl --- See USB_FLAG1 Structure 80
U8 ReservedByte[126] Null Reserved -
6.2.2 USB_FLAG STRUCTURE
typedef struct {
U16 CommBySerial: 1;
U16 Reservedflag: 15;
} USB_FLAG1;
Parameter Bit Default | Description Index
Ul6 CommBySerial 0 0 USB Virtual COM 80
0: USB_VCOM_FIXED
1: USB_VCOM_BY_SN (= Port No.
change with serial number)
U16 Reservedflag 1-15 0 Reserved -

99

CipherLab C Programming Part Il

100

Chapter 7 GPS Functionality

Chapter 7
GPS FUNCTIONALITY

8600 supports GPS functionality as long as the GPS module is present. The information

on GPS speed, latitude, longitude and altitude is not confirmed until the return value of
GPS status becomes 1.

IN THIS CHAPTER

7.1 Structure 102

7.2 Functions 103

101

CipherLab C Programming Part Il

7.1 STRUCTURE

7.1.1 GPSINFO STRUCTURE

Use GetGpslInfo() to access the GPS information.

typedef struct {
U8 Status;
U32 Speed;
U8 Latitude[11];
U8 Longitude[12];

U8 SNR;
U8 SatelliteNum;
S32 Altitude;
} GPSINFO;
Member Description
U8 Status 0: invalid data (= not positioned yet)
1: valid data (= positioned)
U32 Speed Your speed when heading toward a target (relative speed, km/h)
U8 Latitude[11] Your location on earth by latitude coordinates (N for North, S for
South)
» ddmm.mmmmN or ddmm.mmmmsS
> For example, 1211.1111N means 12° 11’ 6.67” North.
U8 Longitude[12] Your location on earth by longitude coordinates (E for East, W for
West)
» dddmm.mmmmeE or dddmm.mmmmw
> For example, 2326.2141E means 23° 26’ 12.85” East.
U8 SNR Signal to Noise ratio, average (dB)
U8 SatelliteNum Number of satellites found
S32 Altitude Your location on earth by altitude (meters)

102

Chapter 7 GPS Functionality

7.2 FUNCTIONS

GetGpslinfo
Purpose To get GPS information.
Syntax U8 GetGpsinfo (void *buf, U8 index) ;
Parameters void *buf
Pointer to a buffer where information is stored.
U8 index
1 GPS_STATUS The information on GPS speed, latitude,
> GPS SPEED longitude and altitude is not confirmed until
— the return value of GPS_STATUS becomes
3 GPS_LATITUDE 1.
4 GPS_LONGITUDE
5 GPS_SNR
6 GPS_SATELLITE_NUM
7 GPS_ALTITUDE
Example unsigned char buf[13];
GetGpsInfo(buf, GPS_LATITUDE);
Return Value If successful, it returns 1.

Otherwise, it returns O to indicate the GPS functionality is not enabled yet.

103

CipherLab C Programming Part Il

StartGps

Purpose To enable GPS functionality.
Syntax void StartGps (void);
Example StartGps(Q);

Return Value None

StopGps

Purpose To disable GPS functionality.
Syntax void StopGps (void);
Example StopCps);

Return Value None

104

Chapter 8
FTP FUNCTIONALITY

File Transfer Protocol (FTP), which runs over Transmission Control Protocol (TCP), is used
to transfer files over any network that supports TCP/IP regardless of operating systems.
The FTP functions provided here are for the mobile computer to log in to any FTP server
and log out over network. During a valid session, the mobile computer can issue
commands to the server to perform a specific task, such as to create, change, remove
directories on the server, delete, upload, or download files.

In this chapter, we explain the basics of establishing an FTP connection via the DoFTP
function and scripts. For use of separate FTP functions, please refer to 8.4 Advanced FTP
Functions. If file transfer is desired with the default working directory on the FTP server,
use the DoFTP function to automatically do the same task performed by calling
FTPOpen(), FTPSend(), FTPRecv(), FTPDelete(), FTPRename() and finally
FTPClose(). That is, it will start a process to open a connection, log on to the host,
upload and/or download files, and then close the connection.

Note: Only one connection is allowed at a time.

105

CipherLab C Programming Part Il

IN THIS CHAPTER

8.1 Using DOFTP FUNCLION ... e 107
8.2 Editing Script File ... 111
8.3 SIIUCTUIE ...ttt ettt ae e eeeeanas 120
8.4 Advanced FTP FUNCLIONSoiiiiiiiiciii e 121
8.5 File HaNAliNG . .counnei e 131
8.6 SD Card ACCESS ...uuuiiieittiiia e e e e eeiaaeeeeaaannes 133

106

Chapter 8 FTP Functionality

8.1 USING DOFTP FUNCTION

8.1.1 FUNCTION
DoFTP
Purpose To automatically do the same task performed by calling FTPOpen(), FTPSend(),
FTPRecv(), FTPDelete(), FTPRename(), and finally FTPClose().
Syntax S32 DoFTP (S8 IFMode,
S8 *HostlIP,
S8 *Username,
S8 *Password,
S8 *Port);
Parameters S8 IFMode
via802dotll 802.11b/g/n
viaEthernetCradle Ethernet Cradle

S8 *HostIP

Pointer to a buffer where the IP address of FTP server is stored.

S8 *Username

Pointer to a buffer where the username string is stored (Max. 64 characters).
S8 *Password

Pointer to a buffer where the password string is stored (Max. 64 characters).
S8 *Port

Pointer to a buffer where the remote port number is stored.

> By default, TCP port 21 is used on the server for the control connection.

Example DOFTP (via802dotll, (S8 *)"'192.168.17.6", (S8 *)"test4669", (S8
*)"1234", (S8 *)"21");

Return Value If successful, it returns O.
On error, it returns a non-zero value to indicate a specific error condition.

Return Value

-1 FTPOpen failed, or another DoFTP is running

-2 Failed to update or receive FTP.dat, or failed to get parameters
from the script file

-3 Failed to resolve hostname to binary IP address

-4 Failed to connect to host

-5 Incorrect username

-6 Incorrect password

-7 Failed to switch to a different server specified in the new script
file.

107

CipherLab C Programming Part Il

Remarks

108

-8 Failed to update program(s)

-10 Failed to set binary transfer mode

-20 Host IP is empty

-21 Username is empty

-1001~ Failed to transmit or receive files

-1999 » The last 3 digits refer to a total number of files, e.g.

“-1003” means it failed to transmit or receive 3 files

When successfully connected to the server and no script file is found on the
mobile computer, it will check for any script file on the server. When available,
it will download the file for immediate use.

Refer to Appendix IV — FTP Response & Error Code.

4
4

FTP messages are are stored in the global array szFTPReplyCode[256].

For DoFTP(), the messages are stored in the global array
szFTPResponseTbl[1024]. If an error occurs, the error code will be
appended to the message, indicating the error condition encountered.

8.1.210G

Chapter 8 FTP Functionality

For the various activities performed by DoFTP(), it maintains a history of all the results
and saves to the array szFTPResponseTbl [DOFTP_RECORD_SI1ZE(1024)7]. When the buffer
is entirely full, the array will be cleared before saving more recent entries. When there is
another attempt of DoFTP(), the array will be cleared as well.

Log Format

Action:Paral:Para2:Para3:Result

Event Action = Parameter Example
Establish a connection... E Paral: IP Success:
Para2: Username E:192.168.6.24:UserTest:1234:0
Para3: Password Failure:
E:-192.168.6.24:UserTest:1234:X
Login... L Paral: IP Success:
Para2: Username L:192.168.6.24:UserTest:1234:0
Para3: Password Failure:
L:192.168.6.24:UserTest:1234:X
Switch to another server... w pParal: IP Success:
Para2: Username W:192.168.6.1:UserTest:1234:0
Para3: Password Failure:
W:192.168.6.24:UserTest:1234:X
E:192.168.6.24:UserTest:1234:X
OR
W:192.168.6.24:UserTest:1234:X
L:192.168.6.24:UserTest:1234:X
Get IP from script file... P Paral: IP Success:
Para2: Username P:192.168.6.1:UserTest:1234:0
Para3: Password Failure:
P:192.168.6.1:UserTest:1234:X
Upload files to server... S Paral: Local file Success:
name S:test:test20000111061852.txt: :0
Para2: Remote . i
. Failure:
file name
S:test:testCipherlab.txt::X
Download files from server... R Paral: Local file Success:
name R:test:FTPTest/test.txt::0
Para2: Remote . B
. Failure:
file name

R:test:FTPTest/test.txt::X

109

CipherLab C Programming Part Il

Network initialization...

Update the script file...

Get directory information...

Delete files from the FTP
server

Rename the files on the FTP
server

110

r

No parameters

Para2: Remote
file name

Paral: New file
name

Para2: Old file
name

Success: 1::::0

Failure: 1::::X

Success: Uz:::

Failure: Uz :::X

Success: D::::

Failure: D::::

Success:
d::FTPTest/test.txt::0
Failure:
d::FTPTest/test.txt::X
Success:
r:test:FTPTest/test.txt::0

Failure:
r:test:FTPTest/test.txt: X

Chapter 8 FTP Functionality

8.2 EDITING SCRIPT FILE

The script must be saved to the file FTP.dat in the following format.

» If connection arguments (ServerlP, TCPport, Username, and Password) are passed to
the DoFTP function, it will run the script file with the received arguments to establish
an FTP session and then send and/or receive files.

» If no arguments received, the DoFTP function will run the script file to establish an
FTP session and transfer files accordingly.

File Name

FTP.dat /*
** The file name “FTP.dat” is reserved for the
** script file. Do not use it with “rFile=" or
** “tFile=". Because it is hard-coded, the file
** name must be uppercase while the file
** extension must be lowercase.
*/

Format

ServerlpP=

TCPport=

Username=

Password=

UpdateScript,<Version control>,<Mandatory>
rFile=<Local file namel>,<Remote file name>,<Version control>,<Mandatory>
rFile=<Local file name2>,<Remote file name>,<Version control>,<Mandatory>

rFile=<Local file name3>,<Remote file name>,<Version control>,<Mandatory>

tFile=<Local file nameX>,<Remote file name>,0,<Mandatory>

rFile=<Local file namelO>,<Remote file name>,<Version control>,<Mandatory>

111

CipherLab C Programming Part Il

Example

ServerlP=192.168.17.6
TCPport=21

Username=test4669

Password=1234 - - - .
Check whether new script file is available.

UpdateScript,1,M €—————— When there is no script file on the server, stop
running script.

rFile=Rcvl.txt,Lookupl.txt,O0,

rFile=Rcv2.txt,Lookup2.txt,1,

rFile=Rcv3.txt,Lookup3.txt,1,

tFile=A:/TestFile,Txac,0,

tFile=Sendl,Txac_test,O0,
rFile=Sendl,Txac_test,-1,

/* Upload and delete the file. Remote file name is ignored */

tFile=,Lookup4.txt,-1,
/* deletes the Lookup4.txt from the FTP server */

tFile=Lookup6,Lookup5,-2,

/* renames the Lookup5 on the FTP server to ‘“Lookup6” */

Line Default | Description
ServerlP= Null IP address of FTP server
TCPport= Null Remote port number

» By default, TCP port 21 is used on the server for the
control connection.

Username= Null User name for logging onto FTP server

Password= Null Password for logging onto FTP server

112

Chapter 8 FTP Functionality

UpdateScript, ... Null “UpdateScript, (1/0)” is required for checking updates to
the script file, with given version control. This line must be
run before transmitting or receiving files.

» If a different server is specified, it will connect to the
new server in the next connection.

» If you need to switch to a different server immediately,
use the SWITCH command.

rFile= Null Receive a specific file with given version control

» Local file name: It's case-sensitive. File extension
omitted is allowed.

» Remote file name: It must follow the rules of the file
system used by FTP server. Wild card is supported.

» User program update is allowed when the file name is
prefixed with the character “~”. Also, version control
will be ignored.

tFile= Null Transmit a specific file with version control set off

» local file name: Whether including file
extension or not, a local file
name must not exceed 8
characters and must be
case-sensitive.

» remote file name: Such name must follow the
remote FTP server's file
system’s rules. Wild card is
supported.

» Version control must be set to O.

Delete a specific file from the FTP server
» The first parameter must be ignored.

» remote file name: Such name must follow the
FTP server’'s file system’s
rule. Wild card is supported.

» Version control must be set to -1.

Rename a specific file on the FTP server

» new file name: The file name to replace the old
one.

» old file name The file name to be replaced by
the new one.

» Version control must be set to -2.

Note: Access to SD card is allowed; however, file name is not case-sensitive. Refer to
8.6 SD Card Access. Although file name may be case-sensitive on remote host, for
use with SD card, it is suggested to avoid using letter case for identifying two files
with identical file name, such as “AAA.txt” and “aaa.txt”.

113

CipherLab C Programming Part Il

8.2.1 REMOTE FILE INFORMATION

Upon completion of executing DoFTP() but before closing the connection, it will
automatically save remote file information to the file DIRList on the mobile computer.
Such up-to-date information lists file entries in the default working directory.

File Entry Format

Each entry is saved in the following format: YYYYMMDDhhmmss<file name>(0x0d)
It consists of
14 digits for the time when each file is created on the server.

A file name, which is case-sensitive and can be made up of 8 characters at most, with or without
file extension included. For example, “TestFile” and “Svrl.txt” are considered acceptable.

You may use FTPRecv() to save the remote file information to another file, whose file
entry format depends on where it is saved to. For example,

FTPRecv((S8 *)"FileList”, (S8 *)"", (88 *)"");
/* Save to SRAM, File name is case-sensitive */
FTPRecv((char *)"A:\\FileList", (88 *)"", (S8 *)"™");

/* access to SD is allowed, file name is NOT case-sensitive */

8.2.2 LOCAL FILE INFORMATION

Upon completion of downloading a file via DoFTP(), it will automatically add or update
the entry to the file RCVList on the mobile computer.

File Entry Format

Each entry is saved in the following format:
YYYYMMDDhhmmss<file name>YYYYMMDDhhmmss(0x0d)

It consists of
14 digits for the time when each file is created on the server.

A file name, which is case-sensitive and can be made up of 8 characters at most, with or without
file extension included. For example, “TestFile” and “Rcvl.txt” are considered acceptable.

14 digits for the time when each file is downloaded to the mobile computer.

Access to SD card is allowed. Refer to 8.6 SD Card Access. The entry in the file RCVList is
in full path. For example,

YYYYMMDDhhmmssA:/FTP/Test/8X00.TXTYYYYMMDDhhmmss (0x0d)

YYYYMMDDhhmmssA:/FTP/Test/8X00.TXT00000000000000(0x0d)

114

Chapter 8 FTP Functionality

8.2.3 VERSION CONTROL

Version control only takes effect when the following two conditions are satisfied:

» The mobile compueter has started an FTP session via DoFTP() over network.
» The script line must start with “rFile=" or “UpdateScript”.

Version Control Description

0 Disable version control

» For the lines starting with “tFile=", version control must be set to 0.
1 Enable version control

» Checks the local file information against the remote file information.

» For the lines starting with “rFile=", if no existing file is found or the file
is not recorded in the file RCVList on the mobile computer, the version
control is ignored and the specified files are received.

> For the lines starting with “UpdateScript”, if no existing script file is
found on the mobile computer, version control is ignored and the
specified files are received.

-1 rFile:
Deletes files from the mobile computer

> For the lines starting with “rFile=" only. Any specified remote file
name will be ignored.

> The entry saved in the file RCVList will be modified:
from YYYYMMDDhhmmss<file name>YYYYMMDDhhmmss(0x0d)
to YYYYMMDDhhmmss<file name>00000000000000(0x0d)
tFile:
Deletes files from the FTP server
> any specified local file name will be ignored.
-2 Renames the files on the FTP server

» For the lines starting with “tFile=" only.

115

CipherLab C Programming Part Il

8.2.4 MANDATORY FLAG

The flag is used to set a breakpoint. While running script, it may stop at a line with such
flag if it fails to transmit or receive the file. For example,

UpdateScript,1,M
tFile=Test.txt,SvrTest.txt,0,M

8.2.5 UPDATE SCRIPT FILE

“UpdateScript, (1/0)” is required for checking any update to the script file. This line
must be run before transmitting or receiving files.

Format

The line must be “UpdateScript, (1/0),<Mandatory>".

When new script file is available, it will first update the script file, and then run the lines
in the new script file to transmit or receive files, as shown below.

Current Script New Script

1 ServerIP=192.163.17.6 ServerIP=192.165.1.1
TCPport=21 TCPport=21
Username=te3stdaad Username=te3st4869
Pasaword=1234 Pagaword=1234

—,

@pdateﬂ cript,1,M \ UpdateScript, 1,

SWITCH rFile=Rcv4d.txt,Svrd.txt, 0,
rFile=Rcvl.txt,Svrl.txt, 0, @ rFile=Rcv5.txt, Svr5.txt, 1,
rFile=Rcvi.txt,Svrd.txt, 1, rFile=Rcve.txt, Svre.txt, 1,

rFile=Rcwv3.txt,Svr3.txt,1,
tFile=TeatFile, Svr50.txt, 0,
tFile=TestFile, Svril.txt, 0, rFile=TestFile, Svreld.txt,-1,

rFile=TestFile,Svrii.txt,-1,

Note: If a different server is specified in the new script, it will connect to the new server
in the next connection. If you need to switch to a different server immediately, use
the SWITCH command.

116

Chapter 8 FTP Functionality

8.2.6 UPDATE USER PROGRAM

Program update is allowed via DoFTP() when a user program (.bin) is properly specified
in the script file. Upon completion of executing DoFTP(), it will automatically update the
program.

Format

The line must be as shown below:

rFile=~<Local file name>,<Remote file name>,<version control>,<Mandatory>

For example,
rFile=~CipherAP,NewAP,0,

/* Save to SRAM, local File name is case-sensitive */
rFile=~A:/FTP/user.bin,NewAP,O,

/* Local file name is NOT case-sensitive */

On the right of the equal sign, it consists of
The character “~”.

A file name, which is case-sensitive and can be made up of 8 characters at most, with file
extension included. For example, “CipherAP” and “User.bin” are considered acceptable.

Version control; however, it will be ignored.

8.2.7 SWITCH TO A DIFFERENT SERVER

The “SWITCH” command is supported for immediate switching to a different server
specified in the new script file. This line must be run after the connection settings and
“UpdateScript”.

Format

The line must be “SWITCH”, all in uppercase.

When new script file is available, it will first update the script file, and then compare
whether the connection settings between the original script and the update are the same.

» When server IP or username is found different, it will disconnect the current

connection immediately, and use the updated connection settings to establish a new
connection.

» In the new connection, the “UpdateScript” line will not be executed until it connects
to the new server in the next connection.

> If it fails to execute the “SWITCH” command, it will stop executing the rest of lines
after “SWITCH”.

» If there is more than one “SWITCH” line, only the first one will be executed.

117

CipherLab C Programming Part Il

Current Script MNew Script

1 ServerIP=192.168.17.6 ServerIP=192.163.1.1 <€
TCPport=:21l TCPport=21 5
Taername=testd a9 Tsername=testd6as k)
Pagsword=1234 Pagsword=1234 =

-

@ UpdateScript,1,M \ UpdateScript, 1,
SWITCH rFile=Rcv4.txt,Svrd.txt, 0,
rFile=Rcvl.txt,Svrl.txt,0, @ rFile=Rcv3.txt,Svr5.txt, 1,
rFile=Rcvi.txt,3vri.txt, 1, rFile=Rcve.txt,3vre.txt, 1,
rFile=Rcv3.txt,Svr3.txt,1, L.

(4 i SWITCH >
tFile=TestFile,Svril.txt, 0, tFile=TeatFile,Svr50.txt, 0, v
rFile=TestFile, Svri2.txt,-1, rFile=TestFile, Svred.txt,-1, @
W

8.2.8 WILDCARDS FOR REMOTE FILE NAME

Wildcard characters are supported for distinguishing the files transmitted from the mobile
computer to the FTP server.

Start with a “%” character, followed by a capital letter: %T, %N or %I

Only valid for remote file names

Can be inserted to any place in the file name

Can be applied multiple times and in combinations, as long as the actual file name
does not exceed 256 characters. If the file name becomes too long, it will be
truncated automatically. If it comes with a file extension, this will result in leaving it
out.

v v Vv Vv

Three wildcards are supported for remote file names:

%T

Use “%T” to insert device system time (14 characters) to file name of the files transmitted to the
server.

%N

Use “%N” to insert device serial number (9 characters by factory default) to file name of the files
transmitted to the server.

%l

118

Chapter 8 FTP Functionality

Use “%1” to insert user-specified string (max. 16 characters) to file name of the files transmitted
to the server. Refer to 8.4.9 Wildcards for Remote File Name (User-Specified Sring)

Example

tFile=test,test®%T.txt,0,M /* Remote file name, ex. test20000111061852.txt */
tFile=test, test®l . txt,0,M /* Remote file name, ex. testCipherlab.txt */
tFile=test,test¥N.txt,0,M /* Remote file name, ex. testDB9001999.txt */

tFile=test, test®N+%I1+%T.txt,0, /* Ex. testDB9001999+Cipherlab+20000111061905.txt */

119

CipherLab C Programming Part Il

8.3 STRUCTURE

8.3.1 FTP_SETTINGS STRUCTURE
You may store the default connection settings to this structure.

Note: These settings are efficacious only when no arguments in DoFTP() and no script
for connection settings.

extern FTP_SETTINGS FtpConfig

typedef struct {
S8 ServerlP[254];
S8 TCPport[8];
S8 Username[65];
S8 Password[65];
} FTP_SETTINGS;

Parameter Default Description

S8 ServerlP[254] Null IP address of FTP server, or a null-terminated hostname
» For hostname, the string
S8 TCPport[8] Null Remote port number

» By default, TCP port 21 is used on the server for the
control connection.

S8 Username[65] Null User name for logging on to FTP server

S8 Password[65] Null Password for logging on to FTP server

120

Chapter 8 FTP Functionality

8.4 ADVANCED FTP FUNCTIONS

Below lists the advanced FTP functions supported in separate external libraries. You may
use these functions to start an FTP session, instead of using the DoFTP () function.

»
4
4

v Vv Vv Vv WV

Call FTPOpen() to open a connection and log on to the host.
Call FTPClose() to close the connection.

Call FTPDir() to save remote file information in the current working directory to the
file DIRList on the mobile computer.

Call FTPCwd() to change the current working directory.
Call FTPSend() or FTPAppend() to upload files.

Call FTPRecv() to download files.

Call FTPDelete() to delete files from the FTP server.

Call FTPRename() to rename the files on the FTP server.

121

CipherLab C Programming Part Il

8.4.1 CONNECT: FTPOPEN

FTPOpen
Purpose To open a connection and log on to the host network over wireless network
(802.11b/g/n).
Syntax S32 FTPOpen (S8 *HostlIP,
S8 *Username,
S8 *Password,
U32 nPort);
Parameters S8 *HostIP
Pointer to a buffer where the IP address or hostname of FTP server is stored.
(Max. 253 characters for hostname)
» Use “0,0,0,0” for Bluetooth FTP connection.
S8 *Username
Pointer to a buffer where the username string is stored. (Max. 64 characters)
S8 *Password
Pointer to a buffer where the password string is stored. (Max. 64 characters)
U32 nPort
Pointer to a buffer where the remote port number is stored.
» By default, TCP port 21 is used on the server for the control connection.
» Use port O for Bluetooth FTP connection.
Example NetInit(); //select network via 801.11b/g/n
while(1){ //Check if iInitialization is done
if (CheckNetStatus(NET_IPReady)) break;
OSTimeDly(4);
}

Return Value

122

FTPOpen((S8 *)"192.168.17.6", (S8 *)"'test4669", (S8 *)"1234", 21);
//1og on to the ftp server

If successful, it returns 0.
On error, it returns a non-zero value to indicate a specific error condition.

Return Value

-3 Failed to resolve hostname to binary IP address
-4 Failed to connect to host

-5 Incorrect username

-6 Incorrect password

-10 Failed to change ASCII mode to binary mode
-20 Host IP is empty

-21 Username is empty

Remarks

See Also

Chapter 8 FTP Functionality

Refer to Appendix V — FTP Response & Error Code.

> FTP messages are are stored in the global array szFTPReplyCode[256].
FTPClose

8.4.2 DISCONNECT: FTPCLOSE

FTPClose

Purpose To close the connection.
Syntax void FTPClose (void);
Example FTPClose(Q);

Return Value None

Remarks

See Also

Refer to Appendix V — FTP Response & Error Code.
> FTP messages are are stored in the global array szFTPReplyCode[256].
FTPOpen

8.4.3 GET DIRECTORY: FTPDIR

FTPDir

Purpose To save remote file information in the current working directory to the file
DIRList on the mobile computer.

Syntax S32 FTPDir (void);

Example FTPDirQ);

Return Value

Remarks

See Also

If successful, it returns 0.

On error, it returns a non-zero value to indicate a specific error condition.
Return Value

-131 Failed to open DIRList

-133 Failed to download file information from working directory

This function will issue the LIST command to get the remote file information.
File entry format depends on FTP server. Refer to _

8.2.1 Remote File Information for file entry format.

Refer to Appendix IV — FTP Response & Error Code.

> FTP messages are are stored in the global array szFTPReplyCode[256].
FTPCwd

123

CipherLab C Programming Part Il

8.4.4 CHANGE DIRECTORY: FTPCWD

FTPCwd
Purpose To change the current working directory.
Syntax S32 FTPCwd (S8 *NewDir);
Parameters S8 *NewDir
Pointer to a buffer where the new directory is stored. Refer to examples
below.
Example 1 FTPCwd((S8 *)"123");
/* change to the directory 123 located in the parent directory of the
current directory */
Example 2 FTPCwd((S8 *)"'/Root/Temp'™);
/* change to the directory Temp by specifying absolute path */
Example 3 FTPCwd((S8 *)"..");
/* Back to the parent directory of the current directory */
Example 4 FTPCwd((S8 *)"/™);

Return Value

Remarks

See Also

124

/* Back to the root directory */

If successful, it returns O.

On error, it returns a non-zero value to indicate a specific error condition.
Return Value

-132 Failed to change working directory

Refer to Appendix V — FTP Response & Error Code.

> FTP messages are are stored in the global array szFTPReplyCode[256].
FTPDir

Chapter 8 FTP Functionality

8.4.5 UPLOAD FILE: FTPSEND, FTPAPPEND

FTPSend
Purpose To upload files.
Syntax S32 FTPSend (S8 *LocalFile,
S8 *RemoteFile,
S8 *ProcessOption);
Parameters S8 *LocalFile
Pointer to a buffer where the local file name is stored.
S8 *RemoteFile
Pointer to a buffer where the remote file name is stored.
S8 *ProcessOption Reserved
Pointer to a buffer where the preprocessing option is stored.
Example FTPSend((S8 *)"Tx1.TXT", (S8 *)"Tx1.TXT", (S8 *)'"'");

Return Value

Remarks

See Also

If successful, it returns O.
On error, it returns a non-zero value to indicate a specific error condition.

Return Value

1 Local file name is empty
-134 Failed to find local file (= no file can be sent)
-135 Failed to send file to host

Refer to Appendix IV — FTP Response & Error Code.
> FTP messages are are stored in the global array szFTPReplyCode[256].
FTPAppend, FTPRecv

125

CipherLab C Programming Part Il

FTPAppend
Purpose To append files to remote host.
Syntax S32 FTPAppend (S8 *LocalFile,
S8 *RemoteFile,
S8 *ProcessOption);
Parameters S8 *LocalFile
Pointer to a buffer where the local file name is stored.
S8 *RemoteFile
Pointer to a buffer where the remote file name is stored.
S8 *ProcessOption Reserved
Pointer to a buffer where the preprocessing option is stored.
Example FTPAppend((S8 *)"Tx1.TXT", (S8 *)"Tx1.TXT", (S8 *)'");

Return Value

Remarks

See Also

126

If successful, it returns O.
On error, it returns a non-zero value to indicate a specific error condition.

Return Value

1 Local file name is empty
-134 Failed to find local file (= no file can be sent)
-135 Failed to send file to host

This function is not supported by Bluetooth FTP. Calling FTPAppend() will get
the same result as calling FTPSend().

Refer to Appendix IV — FTP Response & Error Code.
> FTP messages are are stored in the global array szFTPReplyCode[256].
FTPRecv, FTPSend

Chapter 8 FTP Functionality

8.4.6 DOWNLOAD FILE: FTPRECV

FTPRecv
Purpose To download files.
Syntax S32 FTPRecv (S8 *LocalFile,
S8 *RemoteFile,
S8 *ProcessOption);
Parameters S8 *LocalFile
Pointer to a buffer where the local file name is stored.
S8 *RemoteFile
Pointer to a buffer where the remote file name is stored.
S8 *ProcessOption Reserved
Pointer to a buffer where the preprocessing option is stored.
Example FTPRecv((S8 *)"Tx1.TXT", (S8 *)"Tx1.TXT", (S8 *)'"'");

Return Value

Remarks

See Also

If successful, it returns O.
On error, it returns a non-zero value to indicate a specific error condition.

Return Value

1 Local file name is empty
-131 Failed to open local file (= no file can save data)
-133 Failed to download file from host

Refer to Appendix IV — FTP Response & Error Code.
> FTP messages are are stored in the global array szFTPReplyCode[256].
FTPSend

127

CipherLab C Programming Part Il

8.4.7 DELETE FILES FROM FTP SERVER: FTPDELETE

FTPDelete
Purpose To delete files from the FTP server.
Syntax S32 FTPDelete (S8 *RemoteFile,
S8 *ProcessOption);

Parameters S8 *RemoteFile

Pointer to a buffer where the remote file name is stored.

S8 *ProcessOption Reserved

Pointer to a buffer where the preprocessing option is stored.
Example FTPDelete((S8 *)"Tx1.TXT", (S8 *)');

Return Value

Remarks

See Also

If successful, it returns O, else -1.
Refer to Appendix IV — FTP Response & Error Code.
> FTP messages are are stored in the global array szFTPReplyCode[256].

Note: Such function deletes files from the FTP server only. It doesn’t delete any file from
the mobile computer.

128

Chapter 8 FTP Functionality

8.4.8 RENAME FILES ON FTP SERVER: FTPRENAME

FTPRename
Purpose To rename the files on the FTP server.
Syntax S32 FTPRename (S8 *RemoteNewfFile,
S8 *RemoteOldFile,
S8 *ProcessOption);
Parameters S8 *RemoteNewFile
Pointer to a buffer where the new file name is stored.
S8 *RemoteOldFile
Pointer to a buffer where the old file name is stored.
S8 *ProcessOption Reserved
Pointer to a buffer where the preprocessing option is stored.
Example FTPRename((S8 *)"New.TXT™, (S8 *)"Old.TXT" , (S8 *)");
Return Value If successful, it returns O, else -1.
Remarks Refer to Appendix IV — FTP Response & Error Code.

> FTP messages are are stored in the global array szFTPReplyCode[256].

Note: Such function renames the files on the FTP server only. It doesn’t rename any file
on the mobile computer.

129

CipherLab C Programming Part Il

8.4.9 WILDCARDS FOR REMOTE FILE NAME (USER-SPECIFIED SRING)

GetUserWildCard

Purpose To get the user-specified string.
Syntax S8 * GetUserWildCard (void);
Example S8 *pUserString;

pUserString =GetUserWildCard();
printf(“UserDefinedString:%s.\r\n”, pUserString);

Return Value If successful, it returns a pointer to where the value of “%1” is stored.

SetUserWildCard

Purpose To set a string used as wildcard “%1” for the remote file name in the script.
Syntax S32 SetUserWildCard (S8 *UserString);
Parameters S8 *UserString

Pointer to a buffer where the string is stored.
Example SetUserWildCard((S8*) “Cipherlab™);
Return Value If successful, it returns O.

Otherwise, it returns -1 to indicate the string length is over 16 characters, or
the pointer is NULL.

130

Chapter 8 FTP Functionality

8.5 FILE HANDLING

8.5.1 DAT FILES

Upload via FTP

Pre-processing of File in Format, Data, etc.

Host

Mobile Computer:

SRAM

SD card

with SD card as mass storage

Not required

Pre-processing of File in Format, Data, etc.

Host

Mobile Computer:

SD card

\ SD card

Not required

131

CipherLab C Programming Part Il

8.5.2 DBF FILES

Download via FTP

Pre-processing of File in Format, Data, etc.

Host
Mobile Computer:
— SRAM Remote Use PC utility “DataConverter.exe”
only: to create legal files (DBO; DB1—8
for IDX files).
SD card
Upload via FTP Pre-processing of File in Format, Data, etc.
Host
4 Mobile Computer:
p— SRAM Remote Use PC utility “DataConverter.exe”
only: to convert SD files (DBO; DB1—~8

——— SD card

with SD card as mass storage

for IDX files) to legal files.

Pre-processing of File in Format, Data, etc.

Host

\ Mobile Computer:
SD card

SD card

132

Remote Use PC utility “DataConverter.exe”

only: to create legal files (DBO; DB1~8
for IDX files).

Remote Use PC utility “DataConverter.exe”

only: to convert SD files (DBO; DB1—~8

for IDX files) to legal files.

Chapter 8 FTP Functionality

8.6 SD CARD ACCESS

When a file name is required as an argument passed to a function call, it must be given

in full path as shown below. Only absolute path is supported, and the file name is not
case-sensitive.

Warning: Although file name may be case-sensitive on remote host, for use with SD

card, it is suggested to avoid using letter case for identifying two files with
identical file name, such as “AAA.txt” and “aaa.txt”.

The maximum length of a full-path file name is 255 characters, where file name can be
made up of 8 characters at most. Refer to 8.6.2 File Name.

File Path File in Root Directory File in Sub-directory
“ANN.L “A:\\UserFile” “A:\\SubDir\\UserFile”
“a:n\\...” “a:\\UserFile” “a:\\SubDir\\UserFile”
“A/.7 “A:/UserFile” “A:/SubDir/UserFile”
“a:/...” “a:/UserFile” “a:/SubDir/UserFile”

Note: (1) For DAT files, it does not matter whether filename extension is included or not.
(2) For DBEF files, it does not require including filename extension.

133

CipherLab C Programming Part Il

8.6.1 DIRECTORY

Unlike the file system on SRAM, the file system on SD card supports hierarchical tree
directory structure and allows creating sub-directories. Several directories are reserved
for particular use.

Reserved Directory Related Application or Function Remark

\Program Program Manager | Download | Store programs to this folder so that you can

4

» Program Manager | Activate download them to 8600:

» Kernel Menu | Load Program | » C program — *.SHX

» Kernel Menu | Kernel Update = » BASIC program — *.INI and *.SYN
4

UPDATE_BASIC()

134

\BasicRun

BASIC Runtime

Chapter 8 FTP Functionality

Store DAT and DBF files that are created and
accessed in BASIC runtime to this folder.
Their permanent filenames are as follows:

DAT Filename

DAT file #1 TXACT1.DAT

DAT file #2 TXACT2.DAT

DAT file #3 TXACT3.DAT

DAT file #4 TXACT4.DAT

DAT file #5 TXACTS5.DAT

DAT file #6 TXACT6.DAT

DBF Filename

DBF file #1 Record file F1.DBO
System Default | F1.DB1
Index
Index file #1 F1.DB2
Index file #2 F1.DB3
Index file #3 F1.DB4
Index file #4 F1.DB5
Index file #5 F1.DB6

DBF file #2 Record file F2.DBO
System Default | F2.DB1
Index
Index file #1 F2.DB2
Index file #2 F2.DB3
Index file #3 F2.DB4
Index file #4 F2.DB5
Index file #5 F2.DB6

DBF file #3 Record file F3.DBO
System Default | F3.DB1
Index
Index file #1 F3.DB2
Index file #2 F3.DB3
Index file #3 F3.DB4
Index file #4 F3.DB5
Index file #5 F3.DB6

135

CipherLab C Programming Part Il

\AG\DBF
\AG\DAT
\AG\EXPORT
\AG\IMPORT

136

DBF file #4 Record file F4.DBO
System Default | F4.DB1
Index
Index file #1 F4.DB2
Index file #2 F4.DB3
Index file #3 F4.DB4
Index file #4 F4.DB5
Index file #5 F4.DB6

DBF file #5 Record file F5.DBO
System Default | F5.DB1
Index
Index file #1 F5.DB2
Index file #2 F5.DB3
Index file #3 F5.DB4
Index file #4 F5.DB5
Index file #5 F5.DB6

Application Generator (a.k.a. AG) Store DAT, DBF, and Lookup files that are
created and/or accessed in Application
Generator to this folder.

Chapter 8 FTP Functionality

8.6.2 FILE NAME

A file name must follow 8.3 format (= short filenames) — at most 8 characters for
filename, and at most three characters for filename extension. The following characters
are unacceptable: “* + ,:; <==>?]1[1

» The mobile computer can only display a filename of 1 — 8 characters (the null
character not included), and filename extension will be displayed if provided. If a file
name specified is longer than eight characters, it will be truncated to eight
characters.

» Long filenames, at most 255 characters, are allowed when using the mobile computer
equipped with SD card as a mass storage device. For example, you may have a
filename “123456789.txt” created from your computer. However, when the same file
is directly accessed on the mobile computer, the filename will be truncated to
“123456—~1.txt”".

» If a file name is specified other in ASCII characters, in order for the mobile computer
to display it correctly, you may need to download a matching font file to the mobile
computer first.

» The file name is not case-sensitive.

137

CipherLab C Programming Part Il

138

NET PARAMETERS BY INDEX

Appendix |

NETCONFIG & BTCONFIG

WIRELESS NETWORKING

Refer to 4.1.1 NETCONFIG Structure. However, those highlighted in gray are not included

in the structure.

Index Data Type WLAN
1 P_LOCAL_IP us [4] v

2 P_SUBNET_MASK us [4] v

3 P_DEFAULT_GATEWAY us [4] v

4 P_DNS_SERVER us [4] v

5 P_LOCAL_NAME S8 [33] v

6 P_SS ID S8 [33] v

7 P_WEPKEY_O us [14] v

8 P_WEPKEY_1 us [14] v

9 P_WEPKEY_2 us [14] v

10 P_WEPKEY_3 us [14] v

11 P_DHCP_ENABLE S16 v

12 P_AUTHEN_ENABLE ui16 v

13 P_WEP_LEN Si16 4

14 P_SYSTEMSCALE S16 v

15 P_DEFAULTWEPKEY S16 v

16 P_DOMAINNAME S8 [129] Read only
17 P_WEP_ENABLE ui16 v

18 P_EAP_ENABLE ui16 v

19 P_EAP_ID S8 [33] v

20 P_EAP_PASSWORD S8 [33] v

21 P_POWER_SAVE_ENABLE uUi16 v

22 P_PREAMBLE ui16

23 P_MACID U8 [6] Read only
30 P_ADHOC ul6 v

139

CipherLab C Programming Part Il

Index Data Type WLAN

31 P_FIRMWARE_VERSION S8 [4] Read only

33 P_WPA_PSK_ENABLE uUi16 v

34 P_WPA_PASSPHRASE U8 [64] v

35 P_BSSID U8 [6] Read only

36 P_FIXED_BSSID us [6] v

37 P_ROAM_TXRATE_11B S16 v

38 P_ROAM_TXRATE_11G S16 v

39 P_WPA2_PSK_ENABLE uUi16 v

48 P_SCAN_TIME S16 v

49 P_PROFILE_1 (void*)0 v
us [100]

50 P_PROFILE_2 (void*)0 v
us [100]

51 P_PROFILE_3 (void*)0 v
U8 [100]

52 P_PROFILE_4 (void*)0 v
U8 [100]

53 P_APPLY_PROFILE_1 (void*)0 Write only
us [100]

54 P_APPLY_PROFILE_2 (void*)0 Write only
us [100]

55 P_APPLY_PROFILE_3 (void*)0 Write only
U8 [100]

56 P_APPLY_PROFILE_4 (void*)0 Write only
U8 [100]

91 P_ROAM_RSSI_THRHOLD S16

92 P_ROAM_RSSI_DELTA S16

93 P_ROAM_PERIOD S16

140

Appendix | Net Parameters by Index

Note:

Parameter Index Data Type Description

GetNetParameter 49~52 U8 [100] Get WI-FI Connection Profile 1~4

SetNetParameter | 49-~52 (void*)0 Store current WI-FI Connection
setting to Profile 1—4

SetNetParameter | 49-52 U8 [100] Store user setting to Profile 1—4

SetNetParameter | 53-56 (void*)0 Apply Profile 1~4 to create a WI-FI
connection

SetNetParameter | 53-56 U8 [100] Apply user setting to create a WI-FI

connection

141

CipherLab C Programming Part Il

BLUETOOTH SPP, DUN

Refer to 5.2.1 BTCONFIG Structure. However, those highlighted in gray are not included
in the structure.

Index Data Type SPP DUN

5 P_LOCAL_NAME S8 [33] 4 4

24 P_BT_MACID us [6] Read Read

only only

25 P_BT_REMOTE_NAME S8 [20]

26 P_BT_SECURITY ule v 4

27 P_BT_PIN_CODE us [16] 4 4

28 P_BT_BROADCAST_ON uie v 4

29 P_BT_POWER_SAVE_ON uie v v

32 P_BT_GPRS_APNAME us [20] v

40 P_BT_FREQUENT_DEVICE1 | See BTSearchinfo 4 4
Structure

41 P_BT_FREQUENT_DEVICE2 | See BTSearchinfo 4 4
Structure

42 P_BT_FREQUENT_DEVICE3 See BTSearchinfo v v
Structure

43 P_BT_FREQUENT_DEVICE4 See BTSearchinfo v v
Structure

44 P_BT_FREQUENT_DEVICE5 | See BTSearchinfo 4 4
Structure

45 P_BT_FREQUENT_DEVICE6 | See BTSearchinfo 4 4
Structure

46 P_BT_FREQUENT_DEVICE7 See BTSearchinfo v 4
Structure

47 P_BT_FREQUENT_DEVICE8 See BTSearchinfo v 4
Structure

142

Appendix | Net Parameters by Index

USBCONFIG

Refer to 6.2.1 USBCONFIG Structure.

Index Data Type USB
80 P_USB_VCOM_BY_SN uie v

143

CipherLab C Programming Part Il

144

Appendix |l
NET STATUS BY INDEX

Refer to the following sections for related structures and functions.

> 4.1.3 NETSTATUS Structure
> 4.1.4 RADIOSTATUS Structure
> 5.2.4 BTSTATUS Structure

WIRELESS NETWORKING

Index Remarks 802.11b/g/n
0 WLAN_ State NETSTATUS Structure

5 WLAN_TxRate v

6 NET_IPReady v

14 WLAN_SNR RADIOSTATUS v

Structure
15 WLAN_RSSI 4
16 WLAN_NOISEFLOOR v

BLUETOOTH SPP, DUN

DUN?2 refers to Bluetooth DUN for connecting a modem.

DUNZ2 refers to Bluetooth DUN-GPRS for activating a mobile's GPRS.

Index Remarks SPP DUN1 DUN2
6 NET_IPReady NETSTATUS Structure v
7 BT_State BTSTATUS Structure v v v
8 BT_Signal 4 v v

145

CipherLab C Programming Part Il

146

Appendix I
EXAMPLES

WLAN EXAMPLE (802.11b/g/n)

Configure Network Parameters

Generally, network configuration has to be done in advance by calling GetNetParameter() and
SetNetParameter().

Initialize Networking Protocol Stack & Wireless Module

The wireless module, such as of 802.11b/g/n, Bluetooth, will not be powered until Netlnit() is
called.

Mobile Computer | WLAN Bluetooth PPP via RS-232
(802.11b/g/n) DUN-GPRS

8630 Netlnit() NetlInit(3L) NetlInit(5L)
Netlnit(OL)

8660 - Netlnit(3L) Netlnit(5L)

Check Network Status

Once the initialization process is done, the network status can be retrieved from the system. It
will be periodically updated by the system. The application program must explicitly call
CheckNetStatus() to get the latest status.

Open Connection

Before reading and writing to the remote host, a connection must be established (opened). Call
Nopen() to open a connection. For example,

conno = Nopen(“*”,“TCP/1P**,2000,0,0);

Transmit Data

socket_cansend()

Before sending data to the network, call socket_cansend() to check if there is enough buffer
size to write out the data immediately. It also can be used to check if the data being sent is

more than 4 packets when there is no response from the remote host. Then, call Nwrite() to
send data on the network.

socket_hasdata()

Before receiving data from the network, call socket_hasdata() to check if there is data in the
buffer. Then, call Nread() to receive data on the network.

147

CipherLab C Programming Part Il

Note: In case of an abnormal break during PPP or DUN-GPRS connection,
CheckNetStatus(IPReady) will return -1.

Other Useful Functions...

Refer to 2.4 Supplemental Functions.

Close Connection

Call Nclose() to terminate a particular connection, which equals to conno returned by Nopen(),
when the application program does not use it any more.

Terminate Networking Protocol Stack & Wireless Module

When the application program wishes to stop using the network, call NetClose() to terminate
networking and shut down the power to the module so that it can save power. To enable the
network again, it is necessary to call Netlnit() again.

Note: After calling NetClose(), any previous network connection and data will be lost.

WPA ENABLED FOR SECURITY

If WPA-PSK/WPA2-PSK is enabled for security, SSID and Passphrase will be processed to
generate a pre-share key. If you change SSID or Passphrase, it will have to re-generate
a pre-share key.

I) For initial association with an access point, you will see an antenna icon flashing on
the screen to indicate that the mobile computer is processing a pre-share key.

@

Wait for a few seconds.
This flashing icon@indicates it is
connecting to an access point
using the same SSID.

2) After having generated the pre-share key, the mobile computer proceeds to establish
a connection with an access point.

3) When the mobile computer has been connected to the access point successfully, you
will see the antenna without flashing and the indication of wireless signal strength.

Note: Be aware that these icons will appear on the device screen after Netlnit() is called.
(WPA-PSK/WPA2-PSK must be enabled first!)

148

Appendix Il Examples

BLUETOOTH EXAMPLES

SPP MASTER

Inquiry
Call BTInquiryDevice (BTSearchlnfo *Info, S16 max) to discover nearby Bluetooth devices.

Pairing

Call BTPairingTest (BTSearchinfo *Info, BTSerialPort) to pair with a Bluetooth device.

Set Communication Type
Call SetCommType (2, COMM_RF) to set COM2 for Bluetooth communication.

Open COM Port
Call open_com (2, BT_SERIALPORT_MASTER) to initialize Bluetooth SPP Master.

Check Connection

Call com_eot (2) to detect if the connection is completed. For example,

while (1) {
it (com_eot(2)) break;
OSTimeDly(4);

¥

Transmit/receive Data

Call write_com() and read_com() to transmit and receive data respectively.

Check Connection

Call com_eot (2) to detect if the connection is broken. For example,
if (lcom_eot(2)) printf(“Connection break™);

Close COM Port

Call close_com (2) to terminate communication and shut down the Bluetooth module.

149

CipherLab C Programming Part Il

SPP SLAVE

Set Communication Type

Call SetCommType (2, COMM_RF) to set COM2 for Bluetooth communication.

Open COM Port

Call open_com (2, BT_SERIALPORT_SLAVE) to initialize Bluetooth SPP Slave.

Check Connection

Call com_eot (2) to detect if the connection is completed. For example,
while (1) {

if (com_eot(2)) break;

OSTimeDly(4);
}

Transmit/receive Data

Call write_com() and read_com() to transmit and receive data respectively.

Check Connection

Call com_eot (2) to detect if the connection is broken. For example,
if (com_eot(2)) printf(“Connection break™);

Close COM Port

Call close_com (2) to terminate communication and shut down the Bluetooth module.

150

BLUETOOTH HID

Configure Wedge Settings

Appendix Il

Examples

Bluetooth HID makes use of the WedgeSetting array to govern the HID operations. Refer to
Part I: 2.4 Keyboard Wedge.

Subscript Bit Default Description
0 7-0 1 KBD / Terminal Type
1 7 0 0: Disable capital lock auto-detection
1: Enable capital lock auto-detection
1 6 0 0: Capital lock off
1: Capital lock on
1 5 0 0: Alphabets are case-sensitive
1: Ignore alphabets' case
1 4 -3 00 00: Normal
10: Digits at lower position
11: Digits at upper position
1 2-1 00 00: Normal
10: Capital lock keyboard
11: Shift lock keyboard
1 0 0 0: Use alpha-numeric key to transmit digits
1: Use numeric keypad to transmit digits
2 7 0] 0: Extended ASCII Code
1: Combination Key
2 -1 0 Inter-character delay (unit: 5ms)
2 0] 1 HID Character Transmit Mode

0:
1:

Batch processing

By character

WedgeSetting[0]: It is used to determine which type of keyboard wedge is applied, and the
possible value is listed below.

151

CipherLab C Programming Part Il

Setting Value Terminal Type Setting Value Terminal Type

0 Null (Data Not Transmitted) '8 PCAT (BE)

1 PCAT (US) 9 PCAT (SP)

2 PCAT (FR) 10 PCAT (PO)

3 PCAT (GR) 11 IBM A01-02 (Japanese OADG109)
4 PCAT (IT) 12 PCAT (Turkish)

5 PCAT (SV) 13 PCAT (Hungarian)

6 PCAT (NO) 14 PCAT (Swiss(German))

7 PCAT (UK) 15 PCAT (DA)

WedgeSetting[1]: For details, refer to Part I: 2.4 Keyboard Wedge.

WedgeSetting[2]: It is used to configure how it sends data to the host, either by character or
batch processing.

Set Communication Type

Call SetCommType (2, COMM_RF) to set COM2 for Bluetooth communication.

Open COM Port
Call open_com (2, BT_HID_DEVICE) to initialize Bluetooth HID functionality.

Check Connection

Call com_eot (2) to detect if the connection is completed. For example,

while (1) {
if (com_eot(2)) break;
OSTimeDly(4);

}

Frequent Device List

When there is a host device recorded in the Frequent Device List, the mobile computer (as SPP
Master) will automatically connect to it. If the connection fails, the mobile computer will try again.
If it fails for the second time, the mobile computer will wait 7 seconds for another host to initiate
a connection. If still no connection is established, the mobile computer will repeat the above
operation.

When there is no device recorded in the Frequent Device List, the mobile computer (as SPP Slave)
simply must wait for a host device (as SPP Master) to initiate a connection.

Note: As an HID input device (keyboard), the mobile computer must wait for a host to
initiate a connection. Once the HID connection is established, the host device will
be recorded in the Frequent Device List identified as HID Connection.

152

Appendix Il

Transmit Data

Examples

Call write_com(2, *data) or nwrite_com(2, *data, len) to transmit data.

Check Connection

Call com_eot (2) to detect if the connection is broken. For example,
if (com_eot(2)) printf(“Connection break™);

Close COM Port

Call close_com (2) to terminate communication and shut down the Bluetooth module.

153

CipherLab C Programming Part Il

DUN

Inquiry

Call BTInquiryDevice (BTSearchlnfo *Info, S16 max) to discover nearby Bluetooth devices.

Pairing

Call BTPairingTest (BTSearchinfo *Info, BTDialUpNetworking) to pair with a Bluetooth
device that can work as a modem.

Set Communication Type

Call SetCommType (2, COMM_RF) to set COM2 for Bluetooth communication.

Open COM Port

Call open_com (2, BT_DIALUP_NETWORKING) to initialize Bluetooth DUN functionality.

Check Connection

Call com_eot (2) to detect if the connection is completed. For example,

while (1) {
if (com_eot(2)) break;
OSTimeDly(4);

}

Transmit/receive Data

Call write_com() and read_com() to transmit and receive data respectively.

Check Connection

Call com_eot (2) to detect if the connection is broken. For example,
if ('com_eot(2)) printf(“Connection break™);

Close COM Port

Call close_com (2) to terminate communication and shut down the Bluetooth module.

154

Appendix Il Examples

DUN-GPRS

To activate the GPRS functionality on a mobile phone via the built-in Bluetooth dial-up
networking technology, follow the same programming flow of WLAN Example
(802.11b/g/n).

» Before calling Netlnit (BT_GPRS_NETWORKING), the following parameters of
DUN-GPRS must be specified.

Index Default Description
32 P_ BT_GPRS_APNAME [20] Null Name of Access Point for Bluetooth
DUN-GPRS

155

CipherLab C Programming Part Il

ACL

Set 36xx Serial Number

Call Set36xxParameter (SN, P_36XXSN) to set serial number of the connected 36xx device.

Set Communication Type

Call SetCommType (2, COMM_RF) to set COM2 for Bluetooth communication.

Open COM Port

Call open_com (2, BT_ACL_36xx) to initialize Bluetooth ACL.

Check Connection

Call com_eot (2) to detect if the connection is completed. For example,
while (1) {

if (com_eot(2)) break;

OSTimeDly(4);
}

Change 36xx Settings

us P;
P=ACL_PCAT_US;
Call Sset36xxParameter (&P, P_BTACL_Type) to set interface type of the 36xx device.

Call Set36xxParameter (O, P_SetTo36xx) to set 36xx parameters while 36xx is connected and
ready.

Transmit/receive Data

Call write_com() and read_com() to transmit and receive data respectively.

Check Connection

Call com_eot (2) to detect if the connection is broken. For example,
if (lcom_eot(2)) printf(“Connection break™);

Close COM Port

Call close_com (2) to terminate communication and shut down the Bluetooth module.

156

Appendix Il Examples

USB EXAMPLES

USB VIRTUAL COM

Set Communication Type

Call SetCommType (5, COMM_USBVCOM) to set COM5 for USB Virtual COM communication.

Open COM Port

Call open_com (5, setting) to initialize the COM port, where the setting parameter is of no use.

Check Connection

Call com_eot (5) to detect if the connection is completed. For example,

while (1) {
if (com_eot(5)) break;
OSTimeDly(4);

}

Transmit/receive Data

Call write_com() and read_com() to transmit and receive data respectively.

Check Transmission

Call com_eot(5) to check whether there is any transmission in progress. For example,
whille (com_eot(5)); // wait till prior transmission completed

Close COM Port

Call close_com (5) to terminate USB communication.

157

CipherLab C Programming Part Il

USB HID

Configure Wedge Settings

Like Bluetooth HID, USB HID also makes use of the WedgeSetting array to govern the HID
operations. Refer to Part 1: 2.4 Keyboard Wedge.

Subscript Bit Default Description
0 7-0 1 KBD / Terminal Type
1 7 0 0: Disable capital lock auto-detection
1: Enable capital lock auto-detection
1 6 0 0: Capital lock off
1: Capital lock on
1 5 0 0: Alphabets are case-sensitive
1: Ignore alphabets' case
1 4 -3 00 00: Normal
10: Digits at lower position
11: Digits at upper position
1 2-1 00 00: Normal
10: Capital lock keyboard
11: Shift lock keyboard
1 0 0 0: Use alpha-numeric key to transmit digits
1: Use numeric keypad to transmit digits
2 7 0] 0: Extended ASCII Code
1: Combination Key
2 6-1 0 Inter-character delay (unit: 5ms)
2 0] 1 HID Character Transmit Mode

0: Batch processing

1: By character

158

Appendix Il Examples

WedgeSetting[0]: It is used to determine which type of keyboard wedge is applied, and the
possible value is listed below.

Setting Value Terminal Type Setting Value | Terminal Type

0 Null (Data Not Transmitted) 8 PCAT (BE)

1 PCAT (US) 9 PCAT (SP)

2 PCAT (FR) 10 PCAT (PO)

3 PCAT (GR) 11 IBM A01-02 (Japanese OADG109)
4 PCAT (IT) 12 PCAT (Turkish)

5 PCAT (SV) 13 PCAT (Hungarian)

6 PCAT (NO) 14 PCAT (Swiss(German))

7 PCAT (UK) 15 PCAT (DA)

WedgeSetting[1]: For details, refer to Part I: 2.4 Keyboard Wedge.

WedgeSetting[2]: It is used to configure how it sends data to the host, either by character or
batch processing.

Set Communication Type
Call SsetCommType (5, COMM_USBHID) to set COM5 for USB HID communication.

Open COM Port

Call open_com (5, setting) to initialize the COM port, where the setting parameter is of no use.

Check Connection

Call com_eot (5) to detect if the connection is completed. For example,

while (1) {
if (com_eot(5)) break;
OSTimeDly(4);

}

Transmit Data

Call write_com(5, *data) or nwrite_com(5, *data, len) to transmit data.

Check Transmission

Call com_eot(5) to check whether there is any transmission in progress. For example,
whille (com_eot(5)); // wait till prior transmission completed

Close COM Port

Call close_com (5) to terminate USB communication.

159

CipherLab C Programming Part Il

Set Communication Type

Call SetCommType (5, COMM_USBDISK) to set COM5 for the use of USB removable disk.

Open COM Port

Call open_com (5, setting) to initialize the COM port and its associated USB removable disk.

Close COM Port

Call close_com (5) to terminate USB communication.

160

Appendix IV
FTP RESPONSE & ERROR CODE

FTP RESPONSE

ORIGINAL

FTP messages are responses to FTP commands and consist of a 3-digit response code
followed by explanatory text. These messages are stored in the global array
szFTPReplyCode[256].

You may use the printf() function to get the message after executing an FTP command:

printf(“%s”, szFTPReplyCode);

SUMMARIZED WITH ERROR CODE

For DoFTP(), the message is stored in the global array szFTPResponseTbl[1024]. If an
error occurs, the error code will be appended to the message, indicating the error
condition encountered. Refer to Error Code below.

For example, the message could be “DoFTP OPEN OK!”, “FTPOpen Failed.”, etc. The latter
indicates the command is invalid and has caused an error.

Use the printf() function to get the message:

printf(“%s”, szFTPResponseTbl);

ERROR CODE

GENERAL ERROR

Command Error Code Description

(Any) 99 Invalid Command

CONNECT ERROR

Command Error Code Description

FTPOpen -3 Failed to resolve hostname to binary IP address
-4 Failed to connect to host
-5 Incorrect username

161

CipherLab C Programming Part Il

-6 Incorrect password

-10 Failed to set binary transfer mode
-20 Host IP is empty

-21 Username is empty

Command Error Code Description
FTPDir -131 Failed to open DIRList
-133 Failed to download file information at working directory

Command

Error Code

Description

FTPCwd

-132

Failed to change working directory at host

Command Error Code Description

FTPSend 1 Local file name is empty
-134 Failed to find local file at terminal (= no file to send)
-135 Failed to send file to host

Command Error Code Description

FTPAppend 1 Local or remote file name is empty
-134 Failed to find local file at terminal (= no file to send)
-135 Failed to send file to host

Command Error Code Description

FTPRecv 1 Local file name is empty
-131 Failed to open local file at terminal (= no file to save data)
-133 Failed to download file from host

162

INDEX

= T o o) 22
biNd ..o 24
BTINquiryDeviCecvvvviviiiiiiieenannnn. 88
BTPairingTest......cccvviiiiiiiiiieeeaeee 89
BTPairingTestMenuccooiieiinae.. 90
CheckNetStatus..........ccooeeiiieiieiian... 59
clear COMooiiiii i 11
(o1 [o 1Y =Y oo] o o [10
closesocket......oooeiiiiiiiiii 25
(o70] ¢ ¢ [o4 £ T 7
(o0] o ¢ [=T0) A 11
(of0] 0 ¢ I 0)V/=] ¢ (U1 o S 11
(o70] ¢ ¢ T S T 7
(o70] 0] 01T 0! 26
DNS resolver.......ccooeiiiiiiiiiiinniiinn.. 46
DOFTP e 107
fentlsocket ... 27
FregDevListMenUccocieviiiiinnnnn.. 90
[11 =AY o] o 1= o [126
FTPCIOSE ..o 123
FTPCWA ... 124
FTPDelete ..o 128
L 8 5 1 123
FTPOPEN. ... 122
FTPRECV .. 127
FTPRename ...t 129
L ST o o 125
Get36xxParameter..........ccccvvviiiinennn.. 92
GetGpSINTfO ..o 103
gethostbyname ..., 28
GetNetParameter............ccooiiiiiiaaa... 54
getpeernamec.ooooiiiiiiiiiiiiiiaas 29
getsocknamecciiiiiiiiiiiiii 30
getsockopt......ooiiiiiii 31
GetUserWildCardcooooiiiiiennnn.. 130
htonl. ... 44
NtONS ..o 44
inet_addrocoevviiiiii e 33
iINet_NtoA.....coiieiiiiiii e 33
joctlsocketeeeiiiiiii e 33
lISteN .. 34
NCIOSE .. 16
NetCloSe ...coiiiii e 58
Netlnit ... 56
NOPEN .. 17
NPOItNO...ee e 46
Nreadcoooiii e 18
Ntohl.....ooooii e, 44

NWEITE .o 19
NWETE COM . 13
(o] o1=T o [o]0] 1 o P 9
(Y= To [o0 n o [12
7SOV 36
recvirom ..o 37
RFIDGetEventMessagec.ccceeuenen.. 64
SeleCt ... 38
SENA .o 39
SENALO ... 40
Set36xxParameter...........ccceevviiiinnnn.. 94
SetComMMTYPEe i 8
SetNetParameter...........ccooiiiiiiiiiinn.. 55
setsockopt....ccvviiiiiii 41
SetUserWildCardc.cooiiinel. 130
shutdown ... 42
SOCKET ... 43
socket bIOCK.....cciiiiiiiiiiii 46
socket _cansend.........cccviiiiiiiiiiiiian. 47
socket fin.....ooooiiiiiiii 47
socket _hasdata..........ccooeeiiiiiiiiin. 47
socket ipaddroooiiiiiiiiiiiie 48
SOCKet_iSOPeN ..cocuiviiiiii e 48
socket_keepalive..........coooiiiiiiiii 48
socket_noblock ...l 49
socket_push ... 49
socket_rxstat.......cooevvvviiiiiiiiiiiiiiias 49
socket _rxtout.........ccevviiiiiiiieiiiiiias 50
socket_state ... 50
socket_testfincoooiiiiiiiiiii 50
socket_txstat ..., 51
StartGPS. .o 104
STOPGPS i 104
WIFIScan ..o 79
WHTE_COM ..t 14

	Release Notes
	Introduction
	Communication Ports
	1.1 Basics
	1.1.1 Communication Parameters
	1.1.2 Receive & Transmit Buffers

	1.2 Flow Control
	1.2.1 RTS/CTS
	1.2.2 XON/XOFF
	1.2.3 Functions

	1.3 Configure Settings
	1.3.1 Functions

	1.4 Open and Close COM
	1.4.1 Functions

	1.5 Read and Write Data
	1.5.1 Functions

	TCP/IP COMmunications
	2.1 Native Programming Interface
	2.1.1 Basics
	2.1.2 Functions

	2.2 Socket Programming Interface
	2.2.1 Basics
	2.2.2 Functions

	2.3 Byte Swapping
	2.3.1 Functions

	2.4 Supplemental Functions

	Wireless Networking
	3.1 Network Configuration
	3.1.1 Implementation
	3.1.2 Functions

	3.2 Initialization & Termination
	3.2.1 Overview
	3.2.2 Functions

	3.3 Network Status
	3.3.1 Functions

	3.4 WISPr Library
	3.4.1 Structure
	3.4.2 Method
	3.4.3 Customized Method
	3.4.4 WISPr Error Code

	IEEE 802.11b/g/n
	4.1 Structure
	4.1.1 NETCONFIG Structure
	4.1.2 WLAN_FLAG Structure
	4.1.3 NETSTATUS Structure
	4.1.4 RADIOSTATUS Structure
	4.1.5 Wi-Fi Hotspot Search Structure
	4.1.6 Wi-Fi Profile Structure

	4.2 Functions
	4.2.1 Scanning for Wi-Fi hotspots

	Bluetooth
	5.1 Bluetooth Profiles Supported
	5.2 Structure
	5.2.1 BTCONFIG Structure
	5.2.2 BT_FLAG Structure
	5.2.3 BTSEARCH Structure
	5.2.4 BTSTATUS Structure

	5.3 Functions
	5.3.1 Frequent Device List
	5.3.2 Inquiry
	5.3.3 Pairing
	5.3.4 Useful Function Call
	5.3.5 ACL Functions

	USB Connection
	6.1 Overview
	6.1.1 USB HID
	6.1.2 USB Virtual COM
	6.1.3 USB Mass Storage Device

	6.2 Structure
	6.2.1 USBCONFIG Structure
	6.2.2 USB_FLAG Structure

	GPS Functionality
	7.1 Structure
	7.1.1 GPSINFO Structure

	7.2 Functions

	FTP Functionality
	8.1 Using DoFTP Function
	8.1.1 Function
	8.1.2 Log

	8.2 Editing Script File
	8.2.1 Remote File Information
	8.2.2 Local File Information
	8.2.3 Version Control
	8.2.4 Mandatory Flag
	8.2.5 Update Script File
	8.2.6 Update User Program
	8.2.7 Switch to a Different Server
	8.2.8 Wildcards for Remote File Name

	8.3 Structure
	8.3.1 FTP_Settings Structure

	8.4 Advanced FTP Functions
	8.4.1 Connect: FTPOpen
	8.4.2 Disconnect: FTPClose
	8.4.3 Get Directory: FTPDir
	8.4.4 Change Directory: FTPCwd
	8.4.5 Upload File: FTPSend, FTPAppend
	8.4.6 Download File: FTPRecv
	8.4.7 Delete Files from FTP Server: FTPDelete
	8.4.8 Rename Files on FTP Server: FTPRename
	8.4.9 Wildcards for Remote File Name (User-Specified Sring)

	8.5 File Handling
	8.5.1 DAT Files
	8.5.2 DBF Files

	8.6 SD Card Access
	8.6.1 Directory
	8.6.2 File Name

	Net Parameters by Index
	NETCONFIG & BTCONFIG
	Wireless Networking
	Bluetooth SPP, DUN

	USBCONFIG

	Net Status by Index
	Wireless Networking
	Bluetooth SPP, DUN

	Examples
	WLAN Example (802.11b/g/n)
	WPA Enabled for Security

	Bluetooth Examples
	SPP Master
	SPP Slave
	Bluetooth HID
	DUN
	DUN-GPRS
	ACL

	USB ExampleS
	USB Virtual COM
	USB HID
	USB Mass Storage Device

	FTP Response & Error Code
	FTP Response
	Original
	Summarized with Error Code

	Error Code
	General Error
	Connect Error
	Get Directory Error
	Change Directory Error
	Upload Error
	Download Error

	Index

