

BASIC Language Programming
Part I: Basics and Hardware Control

For 8600 Series Mobile Computers

 Version 1.05

Copyright © 2015 ~ 2016 CIPHERLAB CO., LTD.
All rights reserved

The software contains proprietary information of CIPHERLAB CO., LTD.; it is provided
under a license agreement containing restrictions on use and disclosure and is also
protected by copyright law. Reverse engineering of the software is prohibited.

Due to continued product development this information may change without notice. The
information and intellectual property contained herein is confidential between CIPHERLAB
and the client and remains the exclusive property of CIPHERLAB CO., LTD. If you find
any problems in the documentation, please report them to us in writing. CIPHERLAB does
not warrant that this document is error-free.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of CIPHERLAB CO., LTD.

For product consultancy and technical support, please contact your local sales
representative. Also, you may visit our web site for more information.

The CipherLab logo is a registered trademark of CIPHERLAB CO., LTD.

All brand, product and service, and trademark names are the property of their registered
owners.

The editorial use of these names is for identification as well as to the benefit of the
owners, with no intention of infringement.

CIPHERLAB CO., LTD.
Website: http://www.cipherlab.com

http://www.cipherlab.com/

Version Date Notes

RELEASE NOTES

1.05 Sep. 26, 2016 Part I

 Modified: Appendix I –
Symbology Parameter Table for CCD/Laser/Long Range Reader –
: ‘59’, ’62’, ’65’, ’68’ = Max. 127 (default)
: ‘60’, ’63’, ’66’, ’69’ = Min. 4 (default)

Symbology Parameter Table for 2D/Extra Long Range Reader –
: '61'=1, '62'=Max. 55, '63'=Min. 4
: '65'=Max. 55, '66'=Min. 4
: '68'=Max. 55, '69'=Min. 4
: '88'=1, '89'=Max. 55, '90'=Min. 4
: '113'=1, '114'=Max. 55, '115'=Min. 4
: '116'=1, '117'=Max. 55, '118'=Min. 4
: '119'=1, '120'=Max. 55, '121'=Min. 4
: '122'=1, '123'=Max. 55, '124'=Min. 4

 Modified: Appendix II –
Scan Engine, CCD or Laser –
 CODE 2 OF 5 FAMILY –

INDUSTRIAL 25:
: '59' = Max. 127 (default), '60' = Min. 4 (default)

INTERLEAVED 25:
: '62' = Max. 127 (default), '63' = Min. 4 (default)

 MATRIX 25:
: '65' = Max. 127 (default), '66' = Min. 4 (default)

MSI –
: '68' = Max. 127 (default), '69' = Min. 4 (default)

Scan Engine, 2D or (Extra) Long Range Laser –
CODABAR –

:'122'=1, '123'=Max. 55, '124'=Min. 4
descriptions for Length Qualification added

CODE 2 OF 5 FAMILY –
INDUSTRIAL 25 (DISCRETE 25):
:'119'=1, '120'=Max. 55, '121'=Min. 4

INTERLEAVED 25:
:'61'=1, '62'=Max. 55, '63'=Min. 4

MATRIX 25:
:'65'=Max. 55, '66'=Min. 4

 CODE 39 –
:'88'=1, '89'=Max. 55, '90'=Min. 4

CODE 93 –
:'113'=1, '114'=Max. 55, '115'=Min. 4

MSI –
:'68'=Max. 55, '69'=Min. 4

CODE 11 –
:'116'=1, '117'=Max. 55, '118'=Min. 4

Part II

- None

1.04 Nov. 12, 2015 Part I

 Modified: descriptions relating to ‘CD-ROM’ removed

 Modified: Appendix I – SYMBOLOGY PARAMETER TABLE FOR
CCD/LASER READER: No. 190, 300 ~ 317 appended

 Modified: Appendix I – SYMBOLOGY PARAMETER TABLE FOR 2D
READER: No. 183 ~ 187 appended

 Modified: Appendix II – CCD or Laser Scan Engine – No. 190, 300
~ 317 appended

 Modified: Appendix II – 2D Scan Engine – 2D Symbologies: No.
186/187 appended to Composite Codes

Part II

 Modified: Appendix II – NetStatus index updated

1.03 Dec. 22, 2014 Part I

 Modified: 4.17.1 – table of font size updated

 Modified: 4.17.2 – table of display capability updated

 Modified: 4.17.4 – table of font size updated (GET_LANGUAGE,
SELECT_FONT)

 Modified: Appendix I –
Symbology Parameter Table II: No. 181 added (2D)

 Modified: Appendix III –
User Preferences: No. 181 added (2D)

Part II

- None

1.02 Jul. 22, 2014 Part I

 Modified: 4.15.1 – SET_TRIG2KEY function added

 Modified: Appendix I –
Symbology Parameter Table I: No. 54, 173~179 added (CCD/Laser)
Symbology Parameter Table II: No. 174, 176~179, 182 added (2D)

 Modified: Appendix II –
CCD or Laser Scan Engine: No. 54, 173, 174 added
2D Scan Engine – 1D Symbologies: No. 174 added

 Modified: Appendix III –
Read Redundancy: No. 182 added

Part II

- None

1.01 Jun. 17, 2014 Part I

 Modified: 4.17.1 – the Kr font file removed

 Modified: 4.17.4 – descriptions concerning KR removed
(SELECT_FONT)

Part II

- None

1.00 Jan 13, 2014 Part I

 Initial release

Part II

 Initial Release

CONTENTS

RELEASE NOTES .. - 3 -

INTRODUCTION.. 1

DEVELOPMENT ENVIRONMENT .. 3
1.1 Directory Structure ... 3
1.2 BASIC Runtime Engines .. 5
1.3 Development Flow ... 6

1.3.1 Download Runtime Engine .. 6
1.3.2 Edit/Compile BASIC Programs ... 6
1.3.3 Download BASIC Object Files .. 7

USING BASIC COMPILER ... 9
2.1 File Menu ... 10
2.2 Edit Menu .. 11
2.3 Configure Menu .. 13
2.4 Compile Menu ... 15
2.5 Help Menu ... 16

BASICS OF THE CIPHERLAB BASIC LANGUAGE ... 17
3.1 Constants .. 17

3.1.1 String ... 17
3.1.2 Numeric .. 17

3.2 Variables ... 18
3.2.1 Variable Names and Declaration Characters ... 18
3.2.2 Array Variables .. 20

3.3 Expression and Operators .. 21
3.3.1 Assignment Operator .. 21
3.3.2 Arithmetic Operator ... 21
3.3.3 Relational Operator .. 22
3.3.4 Logical Operator .. 22

3.4 Operator Precedence .. 23
3.5 Labels ... 23
3.6 Subroutines .. 24
3.7 Programming Style ... 26

BASIC COMMANDS .. 27
4.1 General Commands .. 29
4.2 Commands for Decision Structures .. 32
4.3 Commands for Looping Structures ... 37
4.4 Commands for String Processing .. 39

CipherLab 8600 BASIC Programming Part I

4.4.1 Combining Strings .. 39
4.4.2 Comparing Strings ... 39
4.4.3 Getting the Length of a String .. 40
4.4.4 Searching for Strings .. 40
4.4.5 Retrieving Part of Strings .. 41
4.4.6 Converting for Strings .. 43
4.4.7 Creating Strings of Repeating Characters .. 46

4.5 Commands for Event Trapping ... 47
4.5.1 Event Triggers.. 47
4.5.2 Lock and Unlock .. 59

4.6 System Commands ... 61
4.6.1 General ... 61
4.6.2 System Information ... 66
4.6.3 Security .. 70
4.6.4 Program Manipulation ... 71

4.7 Barcode Reader Commands .. 76
4.7.1 General ... 76
4.7.2 Code Type.. 82
4.7.3 Reader Settings ... 86

4.8 RFID Reader Commands ... 87
4.8.1 Virtual COM ... 88
4.8.2 Data Format .. 88
4.8.3 Authentication .. 90

4.9 Keyboard Wedge Commands .. 91
4.9.1 Definition of the WedgeSetting Array ... 91
4.9.2 Composition of Output String .. 96

4.10 Speaker Commands ... 99
4.11 LED Command .. 101
4.12 Vibrator Commands ... 103
4.13 Real-Time Clock Commands ... 104
4.14 Battery Commands ... 107
4.15 Keypad Commands... 108

4.15.1 General ... 108
4.15.2 ALPHA Key .. 112
4.15.3 FN Key .. 113

4.16 LCD Commands ... 114
4.16.1 Properties .. 114
4.16.2 Cursor ... 121
4.16.3 Display .. 123
4.16.4 Clear .. 124
4.16.5 Image ... 126
4.16.6 Graphics ... 129

4.17 Fonts .. 132
4.17.1 Font Size .. 132
4.17.2 Display Capability .. 132
4.17.3 Multi-language Font File .. 133

CipherLab 8600 BASIC Programming Part I

4.17.4 Special Font Files ... 133
4.18 Memory Commands ... 138

4.18.1 Flash .. 139
4.18.2 SRAM... 141
4.18.3 SD Card .. 142

4.19 File Manipulation.. 143
4.19.1 DAT Files.. 143
4.19.2 DBF Files and IDX Files .. 151
4.19.3 Error Code ... 159

4.20 SD Card ... 160
4.20.1 File System ... 160
4.20.2 Directory .. 161
4.20.3 File Name .. 163

SCANNERDESTBL ARRAYS .. 165
Symbology Parameter Table for CCD/Laser Reader .. 165
Symbology Parameter Table for 2D Reader .. 173

SYMBOLOGY PARAMETERS ... 183
CCD or Laser Scan Engine ... 183

Codabar .. 183
Code 2 of 5 Family ... 184
Code 39 .. 186
Code 93 .. 187
Code 128/EAN-128/ISBT 128 .. 187
Italian/French Pharmacode .. 188
MSI ... 188
Negative Barcode ... 189
Plessey .. 189
GS1 DataBar (RSS) Family ... 190
Telepen ... 191
UPC/EAN Families ... 191

2D Scan Engine – 1D Symbologies .. 196
Codabar .. 196
Code 2 of 5 ... 197
Code 39 .. 200
Code 93 .. 201
Code 128 ... 201
MSI ... 202
GS1 DataBar (RSS) Family ... 203
UPC/EAN Families ... 204
UCC Coupon Code .. 206
Joint Configuration ... 206
Code 11 .. 208

2D Scan Engine – 2D Symbologies .. 209
Composite Codes .. 210

CipherLab 8600 BASIC Programming Part I

SCANNER PARAMETERS ... 215
Scan Mode .. 215

Comparison Table ... 216
Read Redundancy .. 218
Time-Out ... 218
User Preferences .. 219

RESERVED HOST COMMANDS .. 221

DEBUGGING COMMANDS ... 225
Debugging Example .. 227
Debugging Messages .. 228

RUN-TIME ERROR TABLE ... 237

KEY CODE TABLE .. 239

INDEX .. 241

 1

CipherLab BASIC Compiler provides users with a complete programming environment to
develop application programs for CipherLab 8600 Series Mobile Computers using the
BASIC language. The Windows-based Basic Compiler comes with a menu-driven interface
to simplify software development and code modifications. Many system configurations,
such as COM port properties and database file settings can be set up in the menus. Using
this powerful programming tool to get rid of lengthy coding, users can develop an
application to meet their own needs efficiently. The CipherLab BASIC Compiler has been
modified and improved since its first release in November 1997. Users can refer to
RELEASE.TXT for detailed revision history.

This manual is meant to provide detailed information about how to use the BASIC
Compiler to write application programs for CipherLab 8600 Series Mobile Computers. It is
organized in chapters giving outlines as follows:

Part I: Basics and Hardware Control

Chapter 1 “Development Environment” – gives a concise introduction about the CipherLab
BASIC Compiler, the development flow for applications, and the BASIC Compiler
Run-time Engines.

Chapter 2 “Using CipherLab BASIC Compiler” – gives a tour of the programming environment of
the BASIC Compiler.

Chapter 3 “Basics of CipherLab BASIC Language” – discusses the specific characteristics of the
CipherLab BASIC Language.

Chapter 4 “BASIC Commands” – discusses all the supported BASIC functions and statements.
More than 200 BASIC functions and statements are categorized according to their
functions, and discussed in details.

Part II: Data Communications

Chapter 1 “Communication Ports”

Chapter 2 “TCP/IP Communications”

Chapter 3 “Wireless Networking”

Chapter 4 “IEEE 802.11b/g/n”

Chapter 5 “Bluetooth”

Chapter 6 “USB Connection”

Chapter 7 “GPS Functionality”

Chapter 8 “FTP Functionality”

INTRODUCTION

2

CipherLab 8600 BASIC Programming Part I

 3

Before you install the CipherLab BASIC Compiler, it is necessary to check that your PC
meets the following minimum requirements:

Items Requirements

CPU Pentium 75MHz

Operating System Windows 95/98/2000/NT/XP/Vista/7/8

Minimum RAM 16 MB

Minimum Hard Disk Space 20 MB

Note: Any mobile computer being programmed will need to have a minimum 128 KB
RAM.

IN THIS CHAPTER

1.1 Directory Structure ... 3
1.2 BASIC Runtime Engines ... 5
1.3 Development Flow... 6

1.1 DIRECTORY STRUCTURE

The CipherLab BASIC Compiler Kit contains a number of directories, namely, BASIC
Compiler, Download Utility, BASIC Runtimes, and Font Files. The purposes and
contents of each directory are listed below.

To set up the BASIC programming environment on your PC, simply copy these directories
to your local hard disk.

BASIC Compiler

BC.exe The BASIC Compiler program.

Release.txt The revision history of the BASIC compiler.

Samples Include BASIC source files (.bas), initialization files (.ini) and BASIC object
files (.syn) of the sample programs.

Download Utility

ProgLoad.exe For downloading the following files to mobile computers via RS-232, USB,
or TCP/IP:

 Motorola S format object file (.shx)

 Basic object files (.syn and .ini)

Chapter 1
DEVELOPMENT ENVIRONMENT

4

CipherLab 8600 BASIC Programming Part I

BASIC Runtimes

BC8600.shx 8600 generic version Download font file if not
using system font

Font Files Font Size

8600  Font8600-Multi-Language20.shx

 Font8600-Multi-Language24.shx

 Font8600-TraditionalChinese20.shx

 Font8600-TraditionalChinese24.shx

 Font8600-SimplifiedChinese20.shx

 Font8600-SimplifiedChinese24.shx

 Font8600-Japanese20.shx

 Font8600-Japanese24.shx

 10x20 (15 lines)

 12x24 (12 lines)

 10x20 (15 lines)

 12x24 (12 lines)

 10x20 (15 lines)

 12x24 (12 lines)

 10x20 (15 lines)

 12x24 (12 lines)

 5

 Chapter 1 Development Environment

1.2 BASIC RUNTIME ENGINES

The BASIC Run-time Engines work as interpreters of the BASIC commands. CipherLab
Mobile Computers have to be loaded with the BASIC Run-time (Engines) to run the
BASIC programs; each mobile computer has its own Run-time Engine to drive its specific
hardware features. The Run-time Engines are named as “BCxxxx.shx”, where “BCxxxx” is
the model number of the target mobile computer. For example, “BC8600.shx” is the
BASIC Run-time for 8600 Series.

The BASIC Run-time also provides the capabilities for users to configure the mobile
computer. With the Run-time Engine loaded, the mobile computer can be set to the
“System Mode”. In the “System Mode”, users can set up the system settings such as the
system clock, update the user program, and so on. System Menu presented in the
“System Mode” varies, which is hardware-dependant. For detailed functions of System
Menu, please refer to the reference manual for each series of mobile computers.

Note: Press the following key combination to enter System Menu – [7], [9] and the
[POWER] key.

6

CipherLab 8600 BASIC Programming Part I

1.3 DEVELOPMENT FLOW

Developing a BASIC program for the mobile computers is as simple as counting 1-2-3.
There are three steps:

Step 1 – Download the BASIC Run-time to the target mobile computer.

Step 2 – Edit and compile the BASIC program.

Step 3 – Download the BASIC object file to the target mobile computer.

1.3.1 DOWNLOAD RUNTIME ENGINE

The BASIC Run-time Engines are programs being loaded on the mobile computers to
execute the BASIC object files. They must exist in the mobile computers before the
BASIC object files are downloaded. To download the Run-time Engine (and/ or any other
programs), the target mobile computer needs to be set to the “Download Mode” first to
receive the new program.

There are two ways to enter the “Download Mode” – one is via System Menu, and the
other via Kernel Menu. For details on how to download a program, please refer to the
reference manual for each series of mobile computers.

Note: After re-installing the battery pack, press the following key combination to enter
Kernel Menu – [1], [7] and the [POWER] key.

After the target mobile computer is set to the “Download Mode” and the connection to
the host PC is properly established, the user can run the download utility on the host PC
to download the BASIC Run-time or any other .shx files to the mobile computer. When
the Run-time Engine is downloaded successfully, the message “Ready for BASIC
Download” will be displayed on the mobile screen.

1.3.2 EDIT/COMPILE BASIC PROGRAMS

The BASIC Compiler, bc.exe, comes with a text editor where users can edit their BASIC
programs. Please refer to the next chapter for general information of the operation.

By default, the text being edited with the editor would be saved as a BASIC source file
(.bas). The system settings defined in the Configuration Menu, including “Target
Machine”, COM port settings, transaction file settings, DBF settings and barcode settings,
would be saved as a system initialization file (.ini) with the same name when the .bas file
is saved. The .ini file should be treated as part of the BASIC program, and should be
included when the BASIC program is distributed.

If the BASIC program compiles without any errors, a BASIC object file (.syn) with the
same name is generated. The .ini file and the .syn file are the two files to be downloaded
to the mobile computer. The .ini file contains the system settings, while the .syn file
contains the BASIC object code.

 7

 Chapter 1 Development Environment

1.3.3 DOWNLOAD BASIC OBJECT FILES

Use the BASIC Compiler or the ProgLoad.exe utility to download a compiled BASIC
program. ProgLoad.exe can only download BASIC programs without any viewing or
editing capabilities.

Both the .ini and .syn files must be downloaded to the target mobile computer. Be careful
that if the .ini file is missing, the BASIC Compiler will download the default settings
instead. In this case, it may cause errors during execution. In contrast to the BASIC
Compiler, Progload.exe will not process the downloading if the .ini file is missing, and an
error message will be shown on the display.

After the BASIC object file is downloaded, the target mobile computer will reboot itself to
execute the BASIC program. If any run-time error occurs, an error message will be
shown on the display. Please refer to Appendix VI — Run-Time Error Table for a list of
run-time errors. If the program is not running as desired, modify/compile the BASIC
source code and download it to the target mobile computer again.

8

CipherLab 8600 BASIC Programming Part I

 9

The CipherLab BASIC Compiler looks like a traditional Windows environment application
that supports file management, text editing, and some other functions to simplify the
BASIC program development. To run the compiler, one of the Windows operating
systems is required:

 Windows 95/98
 Windows 2000
 Windows XP
 Windows Vista
 Windows 7
 Windows 8

There are five menus on the menu bar, and each menu provides several
commands/items.

 File Menu
 Edit Menu
 Configure Menu
 Compile Menu
 Help Menu

This chapter discusses the function and operation of each command/item.

IN THIS CHAPTER

2.1 File Menu ... 10
2.2 Edit Menu .. 11
2.3 Configure Menu .. 13
2.4 Compile Menu ... 15
2.5 Help Menu .. 16

Chapter 2
USING BASIC COMPILER

10

CipherLab 8600 BASIC Programming Part I

2.1 FILE MENU

Six commands are provided in this menu.

Command To Do…

New

 Function To create a new BASIC program.

 Operation Click “File” on the menu bar and select “New”.

For the same function, press hot key CTRL+ N or click the [New]
icon on the tool bar.

Open

 Function To open an existing BASIC program.

 Operation Click “File” on the menu bar and select “Open”.

For the same function, press hot key CTRL+ O or click the [Open]
icon on the tool bar.

Save

 Function To save the current editing BASIC program.

 Operation Click “File” on the menu bar and select “Save”.

For the same function, press hot key CTRL+ S or click the [Save]
icon on the tool bar.

Save As

 Function To save the current editing BASIC program with a new name.

 Operation Click “File” on the menu bar and select “Save As”. Enter a new
name in the pop-up window. Then click the [Save] button to save
this program with the new file name.

Print

 Function To print the current editing BASIC program.

 Operation Click “File” on the menu bar and select “Print”.

For the same function, press hot key CTRL+ P or click the [Print]
icon on the tool bar.

Exit

 Function To quit the BASIC Compiler.

 Operation Click “File” on the menu bar and select “Exit”.

For the same function, press hot key ALT+ F4.

 11

 Chapter 2 Using BASIC Compiler

2.2 EDIT MENU

Seven commands are provided here to facilitate the editing of the BASIC source code.

Command To Do…

Undo

 Function To abort the previous editing command or action.

 Operation Click “Edit” on the menu bar and select “Undo”.

For the same function, press hot key CTRL+ Z or click the [Undo]
icon on the tool bar.

Cut

 Function To cut a paragraph off the text and place it on the clipboard. The
paragraph will be removed.

 Operation Drag the cursor to select the paragraph to be cut off. This
paragraph will be highlighted (in a reverse color). Click “Edit” on
the menu bar and select “Cut”.

For the same function, press hot key CTRL+ X or click the [Cut]
icon on the tool bar.

Copy

 Function To copy a paragraph from the text to the clipboard.

 Operation Drag the cursor to select the paragraph to be copied. This
paragraph will be highlighted (in a reverse color). Click “Edit” on
the menu bar and select “Copy”.

For the same function, press hot key CTRL+ C or click the [Copy]
icon on the tool bar.

Paste

 Function To paste a paragraph from the clipboard into the text. This
paragraph will be inserted to the text.

 Operation Move the cursor to the insertion point where the paragraph will be
inserted, and left-click the mouse. Click “Edit” on the menu bar
and select “Paste”.

For the same function, press hot key CTRL+ V or click the [Paste]
icon on the tool bar.

12

CipherLab 8600 BASIC Programming Part I

Delete

 Function To delete a paragraph from the text. This paragraph will not be
placed on the clipboard.

 Operation Drag the cursor to select the paragraph to be deleted. This
paragraph will be highlighted (in a reverse color). Click “Edit” on
the menu bar and select “Delete”.

For the same function, press the Del key.

Select All

 Function To select all the contents of the text.

 Operation Click “Edit” on the menu bar and select “Select All”. All the
contents will be highlighted (in a reverse color).

For the same function, press hot key CTRL+ A.

Find  Function To find a specific letter, symbol, word, or paragraph in the text.

 Operation Click “Edit” on the menu bar and select “Find”. In the pop-up
window, enter the key word to be found in the text. Then, click the
[Find] button to start searching.

For the same function, press hot key CTRL+ F or click the [Find]
icon on the tool bar.

 13

 Chapter 2 Using BASIC Compiler

2.3 CONFIGURE MENU

Eight items are provided here for users to define the system settings. The “Configure
Transaction Files” and “Create DBF Files” items provide the option of “Share file space
with other applications”. The 8600 Series mobile computers support multiple applications,
but only one of them is active; this setting option allows different applications share the
same files.

Command To Do…

Target
Machine

 Function To set the type of the target machine.

 Operation Click “Configure” on the menu bar and select “Target Machine”.
Then scroll through the drop-down menu in the pop-up window to
set the target machine. The selection of the target machine will
affect the number of transaction files, the available baud rate of
the COM port.

Master Card
ID

 Function To define the ID of the master setup card.

 Operation Click “Configure” on the menu bar and select “Master Card ID”.
Type the new card ID in the field in the pop-up window. (This
feature is only valid for stationary terminals, such as models
201/510/520.)

Primary COM
Port Settings

 Function To set the properties of the primary COM port.

 Operation Click “Configure” on the menu bar and select “Primary COM Port
Setting”. Select the desired settings for each property in the
pop-up window.

Secondary
COM Port
Settings

 Function To set the properties of the secondary COM port.

 Operation Click “Configure” on the menu bar and select “Secondary COM Port
Settings”. Select the desired settings for each property in the
pop-up window.

14

CipherLab 8600 BASIC Programming Part I

Configure
Transaction
Files

 Function To define the transaction files (up to 6) to be used and the data
length for each transaction file. Once the data length is defined,
the system will reserve space for the program. If the space is
larger than needed, it would be a waste. On the other hand, when
space is insufficient, data will be truncated to fit in.

 You may choose to create transaction file(s) on SD card.

 “Share file space with other applications” is enabled by
default, which means the same transaction file will not be
deleted after new program is downloaded. If disabled, the user
can get larger file system size.

 Operation Click “Configure” on the menu bar and select “Configure
Transaction Files”. In the pop-up window, check the box to enable
the use of a transaction file, and type the data length for each
enabled transaction file.

Create DBF
Files

 Function To define the DBF files (up to 5) to be used and the IDX files for
each DBF file.

 You may choose to create DBF file(s) on SD card.

 “Share file space with other applications” is enabled by
default, which means the same DBF file will not be deleted
after new program is downloaded. If disabled, the user can get
larger file system size.

 Operation Click “Configure” on the menu bar and select “Create DBF Files”.
In the pop-up window, type the total record length for each DBF
file and define the offset and length for the IDX files.

Barcode
Settings

 Function To configure the system parameters for barcode symbologies and
scanner performance.

 Operation Click “Configure” on the menu bar and select “Barcode Settings”.
In the pop-up window, check the box to enable the decodability of
the target mobile computer for a particular barcode symbology.
For the description of each barcode setting, please refer to
Appendix I & II.

RFID
Settings

 Function To configure the RFID settings including TAG types to be
read/written, start byte, and maximum length.

 Operation Click “Configure” on the menu bar and select “RFID Settings”. In
the pop-up window, select the checkboxes to enable the
decodability of the target mobile computer for a particular TAG
type and the related start byte/max. length.

Note: When exiting the BASIC Compiler or opening another file, if the current file has not
been changed but the barcode settings have been changed, the user will be asked
whether to save the current file or not.

 15

 Chapter 2 Using BASIC Compiler

2.4 COMPILE MENU

Three commands are provided on this menu.

Command To Do…

Syntax
checking

 Function To check the syntax of the BASIC program.

 Operation Click “Compile” on the menu bar and select “Syntax checking”. In
the case of any syntax error in the BASIC program, the “Output”
window pops up to show the line numbers and display the relevant
syntax error message.

Compile

 Function To compile the BASIC program.

 Operation Click “Compile” on the menu bar and select “Compile”.

For the same function, click the “Compile” icon on the tool bar.

In the case of any syntax or compiling error, the “Output” window
pops up to display the error messages. If the compilation is
successfully done, the message “Build successfully, do you want to
download the program?” will be shown on the screen. Click the
[Yes] button if you want to download the program. (Refer to the
“Download” command for downloading operation.)

Download

 Function To download a compiled BASIC program to the target mobile
computer.

 Operation Click “Compile” on the menu bar and select “Download”. In the
pop-up window, select the BASIC object file (.syn) to be
downloaded, and then click [Open]. Select the correct COM port
properties and then click [OK] to download.

Note that the associated system initialization file (.ini) has to be in
the same directory where the BASIC object file is; otherwise, the
default system settings will be downloaded instead.

16

CipherLab 8600 BASIC Programming Part I

2.5 HELP MENU

One command is provided on this menu.

Command To Do…

About

 Function To display the ownership and version of the program.

Note that the version information is necessary when tracing a
programming problem.

 Operation Click “Help” on the menu bar and select “About”. The pop-up
message box declares the ownership and version information of
the program.

 17

The chapter describes the basics of the CipherLab BASIC language.

IN THIS CHAPTER

3.1 Constants .. 17
3.2 Variables.. 18
3.3 Expression and Operators .. 21
3.4 Operator Precedence ... 23
3.5 Labels ... 23
3.6 Subroutines .. 24
3.7 Programming Style ... 26

3.1 CONSTANTS

Constants are the actual values that BASIC uses during execution. There are two types of
constants:

 String
 Numeric

3.1.1 STRING

A string constant is a sequence of up to 255 alphanumeric characters or symbols
enclosed in a pair of double quotation marks.

 “Hello”
 “$20,000.00”
 “12 students”

3.1.2 NUMERIC

Numeric constants include positive and negative numbers. Numeric constants in BASIC
cannot contain commas. There are three types of numeric constants that can be used in
the CipherLab BASIC Compiler:

 Integer Constants: Whole numbers between – 32,768 and + 32,767. No decimal
point.

 Real Number Constants: Positive or negative real numbers, that is, numbers that contain
a decimal point, such as 5.34 or – 10.0.

 Long Integer Constants: Whole numbers between – 2,147,483,648 and + 2,147,483,647.

Chapter 3
BASICS OF THE CIPHERLAB BASIC LANGUAGE

18

CipherLab 8600 BASIC Programming Part I

3.2 VARIABLES

Variables are symbols used to represent data items, such as numerical values or
character strings that are used in a BASIC program. The value of a variable may be
assigned explicitly and can be changed during the execution of a program. Be aware that
the value of a variable is assumed to be undefined until a value is assigned to it.

3.2.1 VARIABLE NAMES AND DECLARATION CHARACTERS

The following are the rules for variable names and declaration characters:

 A variable name must begin with a letter (A to Z).
 The remaining characters can be letters, numbers, and/or underscores.
 The last character can be one of these type declaration characters:

% integer : 2 bytes (- 32,768 to + 32,767)

& long : 4 bytes (- 2,147,483,648 to + 2,147,483,647)

! real number : 4 bytes

$ string : 255 bytes

nothing (default) : 2 bytes (- 32,768 to + 32,767)

 The variable name cannot be a BASIC reserved word.
 Only 4 types of variables are supported. The maximum number of variables is 1,000.
 Variable names are not case-sensitive.

 19

 Chapter 3 Basics of the CipherLab BASIC Language

About Real Number

Every decimal integer can be exactly represented by a binary integer; however, this is not true for
fractional numbers. It is therefore very important to realize that any binary floating-point system
can represent only a finite number of floating-point values in exact form. All other values must be
approximated by the closest representable value. For example, even common decimal fractions,
such as decimal 0.0001, cannot be represented exactly in binary. (0.0001 is a repeating binary
fraction with a period of 104 bits!)

REM Floating-point error

fnum1!=99999.1

fnum2!=99999.0

SET_PRECISION(4)

 print fnum1!

REM : It prints “99999.1016” instead of “99999.1000”.

 print (fnum1!-fnum2!)*100

REM : It prints “10.1562” instead of “10”.

IF (fnum1!-fnum2! <> 0.1) THEN

 print "Not equal"

ELSE

 print "Equal"

END IF

REM : It prints “Not equal” for the comparison of “99999.1-99999.0” and “0.1”

We suggest not handling floating-point values directly but converting them to integers first. After
calculations, convert integers to real numbers if necessary. For example, in order to process the
expression of 1.82-1.8, you are advised to modify the expression to something like 182-180, and
then divide the result by 100 to get the actual result of 0.02.

When the floating-point values are displayed, printed, or used in calculations, they lose precision.
Instead of using floating-point, use integer or long to perform arithmetical or logical calculations. If
there is a need to display a fractional number on the screen, convert the integer or long to a string
and add the decimal point in the proper place. For example,

num1&=999991

num2&=999990

num3&=(num1&-num2&)*100

 print (num1& \ 10) ; "." ; (num1& MOD 10)

REM : It prints “99999.1”

 print (num3& \ 10) ; "." ; (num3& MOD 10)

REM : It prints “10.0”

20

CipherLab 8600 BASIC Programming Part I

3.2.2 ARRAY VARIABLES

An array is a group or table of values referenced by the same variable name. Each
element in an array is referenced by an array variable that is subscripted with an integer
or an integer expression.

 An array variable name has as many dimensions as there are subscripts in the array.
For example,

A(12) : would reference a value in a one-dimension array.

T(2, 5) : would reference a value in a two-dimension array.

 … and so on.

 Each element in an array is referenced by an array variable that is subscripted with
an integer or an integer expression. For example,

DIM IntegerA%(20) : declares an integer array with 20 elements.

DIM StringB$(100) : declares a string array with 100 elements.

DIM RealC!(10) : declares an integer array with 10 elements.

DIM Tb(5, 5) : declares a two-dimension integer array with 5x5 elements.

ArrayD(i+1, j) : The elements of an array are subscripted with an integer
expression.

 The first element of an array is subscripted with 1.
 In the CipherLab BASIC language, the maximum number of dimensions for an array

is 2, and, up to 32,767 elements per dimension is allowed while compiling.

 21

 Chapter 3 Basics of the CipherLab BASIC Language

3.3 EXPRESSION AND OPERATORS

An expression may be a string or numeric constant, or a variable, or it may be a
combination of constants and variables with operators to produce a single value.

Operators perform mathematical or logical operations. The operators provided by the
CipherLab BASIC Compiler may be divided into four categories, namely, Assignment
Operator, Arithmetic Operators, Relational Operators, and Logical Operators.

3.3.1 ASSIGNMENT OPERATOR

The CipherLab BASIC Compiler supports an assignment operator: “=”. For example,

 Length% = 100
 PI! = 3.14159
 Company$ = “CipherLab Co., Ltd.”

3.3.2 ARITHMETIC OPERATOR

The arithmetic operators are:

Operator Operation Sample Expression
^ Exponentiation A% = 9^3

- Negation (unary) A% = -B%

* Multiplication A! = B! * C!

\ Division (integer) A% = B! \ C!

/ Division (real) A! = B! / C!

+ Addition A% = B% + C%

- Subtraction A% = B% - C%

MOD Modulo arithmetic A% = B% MOD C%

22

CipherLab 8600 BASIC Programming Part I

3.3.3 RELATIONAL OPERATOR

Relational operators are used to compare two values. The result of the comparison is
either “True” or “False”. This result may then be used to make a decision regarding
program flow.

Operator Operation Sample Expression
= Equality A% = B%

< > Inequality A% < > B%

> < Inequality A! > < B!

> Greater than A% > B!

< Less than A! < B!

> = Greater than or equal to A% > = B%

< = Less than or equal to A% < = B%

3.3.4 LOGICAL OPERATOR

Logical operators perform tests on multiple relations and Boolean operations. The logical
operator returns a bit-wise result which is either “True” (not zero) or “False” (zero). In an
expression, logical operations are performed after arithmetic and relational operations.

Operator Operation Sample Expression

NOT Logical negation IF NOT (A% = B%)

AND Logical and IF (A% = B%) AND (C% = D%)

OR Inclusive or IF (A% = B%) OR (C% = D%)

XOR Exclusive or IF (A% = B%) XOR (C% = D%)

 23

 Chapter 3 Basics of the CipherLab BASIC Language

3.4 OPERATOR PRECEDENCE

The precedence of BASIC operators affects the evaluation of operands in expressions.
Expressions with higher precedence operators are evaluated first. The precedence of
BASIC operators is listed below in the order of precedence from highest to lowest. Where
several operators appear together, they have equal precedence.

Order of Precedence Type of Operation Symbol

Highest Arithmetic – Exponentiation ^

 Arithmetic – Multiplication, Division, Modulo *, \, /, MOD

 Arithmetic – Addition, Subtraction +, -

 Relational =, <>, >, <, >=, <=

 Logical AND, NOT, OR, XOR

Lowest Assignment =

3.5 LABELS

Line labels are used to represent some special lines in the BASIC program. They can be
either integer numbers or character strings.

 A valid integer number for the line label is in the range of 1 to 32,767.
 A character string label can have up to 49 characters. (If the string label has more

than 49 characters, it will be truncated to 49 characters long.)
 The maximum number of labels is 1,000.

Note: The maximum compilable lines are 12,000.

A character string label that precedes a program line must have a colon “:” between the
label and the program line, but it is not necessary for an integer label. For example,

 GOTO 100

 …

100 PRINT “This is an integer label.”

 …

 GOTO Label2

 …

 Label2: PRINT “This is a character string label.”

24

CipherLab 8600 BASIC Programming Part I

3.6 SUBROUTINES

A subroutine is a set of instructions given a particular name or a line label. Users can
simplify their programming by breaking programs into smaller logical subroutines. A
subroutine will be executed when being called by a GOSUB command. For example,

 ON KEY(1)GOSUB KeyF1

 …

 KeyF1:

 PRINT “F1 is pressed.”

 RETURN

The command RETURN marks the end of the subroutine and tells the processor to return
to the caller. A subroutine has to be appended at the end of the main BASIC program.

A subroutine can be defined with or without a pair of brackets. For example,

 SUB Subroutine1()

 …

 PRINT “Subroutine1 is executed.”

 END SUB

 …

 SUB Subroutine2

 …

 PRINT “Subroutine2 is executed.”

 END SUB

Since all the variables in the CipherLab BASIC program are treated as global variables,
passing arguments to subroutines is meaningless and enclosing arguments in the
brackets of the subroutines will lead to a syntax error while compiling.

A subroutine in BASIC can be recursive, which means it can call itself or other
subroutines that in turn call the first subroutine. The following sample program contains
a recursive subroutine – Factorial, to calculate the value of n! (“n factorial”).

 PRINT “Please enter a number (1 – 13):”

 INPUT N%

 FactResult! = 1

 Fact% = N%

 GOSUB Factorial

 PRINT N%, “! = ”, FactResult

 25

 Chapter 3 Basics of the CipherLab BASIC Language

 Loop:

 GOTO Loop

 Factorial:

 IF Fact% < 1 THEN RETURN

 FactResult! = FactResult! * Fact%

 Fact% = Fact% -1

 GOSUB Factorial

 RETURN

26

CipherLab 8600 BASIC Programming Part I

3.7 PROGRAMMING STYLE

The following are the guidelines used in writing programs in this manual, including the
sample program. These guidelines are recommended for program readability, but they
are not compulsory.

 Reserved words and symbolic constants appear in uppercase letters:
 PRINT “Portable Terminal Demo Program”

 BEEP(800, 30, 0, 5, 800, 15, 0, 5, 800, 15)

 Variable names are in lowercase with an initial capital letter. If variable names are
combined with more than one part, other capital letters may be used to make it
easier to read:
 ProcessFlag% = 0

 Temp$ = GET_RECORD$(3, 1)

 Line labels are used instead of line numbers:
 ON READER(2) GOSUB GetSlotReader

 27

This chapter provides detailed descriptions of the commands supported by the CipherLab
BASIC Compiler. In addition to the commands commonly used in traditional versions of
BASIC, a number of commands that deal with specific hardware features of the mobile
computers are supported. These commands are within the user’s BASIC programs to
perform a wide variety of tasks, such as communications, LCD, buzzer, scanner, file
manipulation, etc. They are categorized and described in this chapter by their functions
or the resources they work on.

Some commands are postfixed with a dollar sign, $, which means a string is returned
with the command. The compiler will accept these commands with or without the dollar
sign. However, the dollar sign will be postfixed to these commands in this manual and
the sample program.

The description for each BASIC command consists of five parts, Purpose, Syntax,
Remarks, Example and See Also, which are further described below.

Example of BASIC Command

Purpose The purpose of the command is briefly explained.

Syntax According to the following conventions, the command syntax is described.

CAPS : BASIC keywords are indicated by capital letters.

Italics : Items in Italics represent variable information to be supplied by user.

[] : Square brackets indicate optional parameters.

{ } : Braces indicate an item may be repeated as many times as
necessary.

| : Vertical bar indicates alternative option.

Remarks Additional information regarding correct command usage is provided.

Example Various ways of using the statement are presented, including applicable and
unusual modes of operation.

See Also List of related commands is provided, if there is any.

Note: The mobile computers that support a specified BASIC command are listed to the
right of the title bar of the command.

Chapter 4
BASIC COMMANDS

28

CipherLab 8600 BASIC Programming Part I

IN THIS CHAPTER

4.1 General Commands ... 29
4.2 Commands for Decision Structures 32
4.3 Commands for Looping Structures 37
4.4 Commands for String Processing 39
4.5 Commands for Event Trapping 47
4.6 System Commands ... 61
4.7 Barcode Reader Commands .. 76
4.8 RFID Reader Commands .. 87
4.9 Keyboard Wedge Commands .. 91
4.10 Speaker Commands .. 99
4.11 LED Command .. 101
4.12 Vibrator Commands ... 103
4.13 Real-Time Clock Commands 104
4.14 Battery Commands .. 107
4.15 Keypad Commands .. 108
4.16 LCD Commands .. 114
4.17 Fonts ... 132
4.18 Memory Commands ... 138
4.19 File Manipulation ... 143
4.20 SD Card ... 160

 29

 Chapter 4 BASIC Commands

4.1 GENERAL COMMANDS

This section describes commands that are not confined to any specific hardware features.

ABS

Purpose To return the absolute value of a numeric expression.

Syntax A = ABS(N)

 “A” is a numeric variable to be assigned to the absolute value of a numeric
expression.

“N” is a numeric expression; it can be an integer or a real number.

Example TimeDifference% = ABS(Time1% - Time2%)

BIT_OPERATOR

Purpose To perform bit-wise operations of integers or long integers.

Syntax C = BIT_OPERATOR(operator%, A, B)

Remarks “C” is an integer (C%) or long integer variable (C&) to be assigned to the
result.

“operator%” is an integer variable, indicating the bit-wise operator. (see below)

“A” is an integer (A%) or long integer (A&) variable, indicating the 1st operand.

“B” is an integer (B%) or long integer (B&) variable, indicating the 2nd operand.

OPERATOR% Meaning

1

2

3

bit-wise AND

bit-wise OR

bit-wise XOR

Example Result& = BIT_OPERATOR(2, 1100, 1000)

DIM

Purpose To specify the maximum value of variable subscripts and to allocate storage
accordingly.

Syntax DIM Array (range {,range}) {, Array(range {,range})}

Remarks “Array” is an array variable.

“range” can be an integer or an integer expression.

The DIM statement sets all the elements of the specified arrays to an initial
value of zero or empty string.

Note that the maximum allowable number of dimensions for an array is 2.

Example DIM A(10), B%(20), C$(30, 10)

30

CipherLab 8600 BASIC Programming Part I

GOSUB

Purpose To call a specified subroutine.

Syntax GOSUB SubName|SubLabel

Remarks “SubName” is the name of a subroutine.

“SubLabel” is the line label of a subroutine.

Example GOSUB DoIt

…

GOSUB Done

…

SUB DoIt()

PRINT “Now I’ve done it!”

END SUB

…

Done:

PRINT “Now I’ve done it!”

RETURN

GOTO

Purpose To branch out unconditionally to a specified line number of line label from the
normal program sequence.

Syntax GOTO LineNumber|LineLabel

Remarks “LineNumber” is the integer number in front of a program line.

“LineLabel” is the string label of a program line.

Example Loop:

GOTO Loop

INT

Purpose To return the largest integer that is less than or equal to the given numeric
expression.

Syntax A% = INT(N)

Remarks “A%” is an integer variable to be assigned to the result.

“N” is a numeric expression.

Example A% = INT(-2.86)

B% = INT(2.86)

‘ A% = -3

‘ B% = 2

 31

 Chapter 4 BASIC Commands

REM

Purpose To insert explanatory remarks in a program.

Syntax REM remark

‘ remark

Remarks “remark” may be any sequence of characters.

The BASIC compiler will ignore whatever follows REM or the apostrophe (‘) until
end of the line.

Example REM This is a comment. ‘ This is a comment.

SET_PRECISION

Purpose To set the precision of the decimal points for printing real number expressions.

Syntax SET_PRECISION(N%)

Remarks “N%” is a numeric expression in the range of 0 to 6.

The precision is set to two digits by default.

Example PI! = 3.14159

PRINT “PI = ”, PI!

SET_PRECISION(6)

PRINT “PI = ”, PI!

SET_PRECISION(2)

PRINT “PI = ”, PI!

‘ result: PI = 3.14 (by default)

‘ result: PI = 3.141590

‘ result: PI = 3.14

SGN

Purpose To return an indication of the mathematical sign (+ or -) of a given numeric
expression.

Syntax A% = SGN(N)

Remarks “A%” is an integer variable to be assigned to the result.

A% Meaning

1

0

-1

N > 0

N = 0

N < 0

“N” is a numeric expression.

Example A% = SGN(100)

B% = SGN(-1.5)

‘ A% = 1

‘ B% = -1

32

CipherLab 8600 BASIC Programming Part I

4.2 COMMANDS FOR DECISION STRUCTURES

Based on the value of an expression, decision structures cause a program to take one of
the following two actions:

 To execute one of several alternative statements within the decision structure itself.
 To branch to another part of the program outside the decision structure.

In CipherLab BASIC, decision-making is handled by the IF…THEN…[ELSE…][ENDIF]
and ON…GOSUB|GOTO… statement. The IF…THEN…[ELSE…][ENDIF] statement
can be used anywhere the ON…GOSUB|GOTO… statement can be used. The major
difference between the two statements is that ON…GOSUB|GOTO… evaluates a single
expression, and then executes different statements or branches to different parts of the
program based on the result. On the contrary, a block IF…THEN…[ELSE…][ENDIF]
can evaluate completely different expressions.

Moreover, the expression given in the ON expression GOSUB|GOTO… statement must
be evaluated by a number in the range 1 to 255, while the expression in
IF…THEN…[ELSE…][ENDIF] statement can only be evaluated as a TRUE or FALSE
condition.

The IF…THEN…[ELSE…][ENDIF] statement can be nested up to 10 levels.

 33

 Chapter 4 BASIC Commands

IF … THEN … [ELSE…]

Purpose To provide a decision structure for single-line conditional execution.

Syntax IF condition THEN action1 [ELSE action2]

Remarks “condition” is a logical expression.

“action” is a BASIC statement.

Example IF Data1% > Data2% THEN

Temp% = Data1%

ELSE

Temp% = Data2%

IF … THEN … {ELSE IF…} [ELSE…] END IF

Purpose To provide a decision structure for multiple-line conditional execution.

Syntax IF condition1 THEN

Statementblock1

{ELSE IF condition2 THEN

Statementblock2}

[ELSE

StatementblockN]

END IF

Remarks “condition” is a logical expression.

“Statementblock” can be multiple lines of BASIC statements.

Example IF LEFT$(String1$, 1) = “A” THEN

PRINT “String1 is led by A.”

ELSE IF LEFT$(String1$, 1) = “B” THEN

PRINT “String1 is led by B.”

ELSE

PRINT “String1 is not led by A nor B.”

END IF

34

CipherLab 8600 BASIC Programming Part I

IF … THEN … END IF

Purpose To provide a decision structure for a conditional execution with multiple lines of
actions.

Syntax IF condition1 THEN

action1

action2

…

END IF

Remarks “condition” is a logical expression.

“action” is a BASIC statement.

Example IF Data1% > Large% THEN

BEEP(800, 30)

Large% = Data1%

PRINT “Current Largest Number is ”, Data1%

END IF

 35

 Chapter 4 BASIC Commands

ON … GOSUB …

Purpose To call one of the several specified subroutines depending on the value of the
expression.

Syntax ON N GOSUB SubName|SubLabel {, SubName|SubLabel}

Remarks “N” is a numeric expression that is rounded to an integer. The value of N
determines which subroutine is to be called. If the value of N is 0, or greater
than the number of routines listed, the interpreter will continue with the next
executable statement.

“SubName” is the name of a subroutine.

“SubLabel” is the line label of a subroutine.

Example PRINT “Input a number (1-9):”

INPUT Num%

CLS

ON Num% GOSUB 100, 100, 100, 200, 200, 300, 400, 400, 400

…

100

PRINT “Number 1-3 is input.”

RETURN

200

PRINT “Number 4-5 is input.”

RETURN

300

PRINT “6 is input.”

RETURN

400

PRINT “Number 7-9 is input.”

RETURN

…

36

CipherLab 8600 BASIC Programming Part I

ON … GOTO …

Purpose To branch to one of several specified Line Labels depending on the value of an
expression.

Syntax ON N GOTO LineLabel {, LineLabel}

Remarks “N” is a numeric expression which is rounded to an integer. The value of N
determines which line label in the list will be used for branching. If the value N
is 0, or greater than the number of line labels listed, the interpreter will
continue with the next executable statement.

“LineLabel” is the string label of a program line.

Example PRINT “Input a number (1-9):”

INPUT Num%

CLS

ON Num% GOTO 100, 100, 200, 200, 300, 400, 400, 400

…

100

PRINT “Number 1-3 is input.”

GOTO 500

200

PRINT “Number 4-5 is input.”

GOTO 500

300

PRINT “6 is input.”

GOTO 500

400

PRINT “Number 7-9 is input.”

500

…

 37

 Chapter 4 BASIC Commands

4.3 COMMANDS FOR LOOPING STRUCTURES

Looping structures repeat a block of statements, either for a specified number of times or
until a certain condition is matched. In CipherLab BASIC, two kinds of looping structures,
FOR…NEXT and WHILE…WEND can be used. The command EXIT can be used as an
alternative to exit from both FOR…NEXT and WHILE…WEND loops.

Both FOR…NEXT and WHILE…WEND statements can be nested up to 10 levels.

EXIT

Purpose To provide an alternative exit for looping structures, such as FOR…NEXT and
WHILE…WEND statements.

Syntax EXIT

Remarks EXIT can appear anywhere within the loop statement.

Example DataCount% = TRANSACTION_COUNT

FOR Counter% = 1 TO DataCount%

Data$ = GET_TRANSACTION_DATA$(Counter%)

HostCommand$ = READ_COM$(1)

IF HostCommand$ = “STOP” THEN EXIT

WRITE_COM(1, Data$)

NEXT

FOR … NEXT

Purpose To repeat the execution of a block of statements for a specified number of
times.

Syntax FOR N% = startvalue TO endvalue [STEP step]

[Statement Block]

NEXT [N%]

Remarks “N%” is an integer variable to be used as a loop counter.

“startvalue” is a numeric expression which is the initial value for the loop
counter.

“endvalue” is a numeric expression which is the final value for the loop counter.

“step” is a numeric expression to be used as an increment/decrement of the
loop counter The “step” is 1 by default.

If the loop counter ever reaches or beyond the endvalue, the program
execution continues to the statement following the NEXT statement. The
Statement block will be executed again otherwise.

Example DataCount% = TRANSACTION_COUNT

FOR Counter% = 1 TO DataCount%

Data$ = GET_TRANSACTION_DATA$(Counter%)

WRITE_COM(1, Data$)

NEXT

38

CipherLab 8600 BASIC Programming Part I

WHILE … WEND

Purpose To repeat the execution of a block of statements while a certain condition is
TRUE.

Syntax WHILE condition

[Statement Block]

WEND

Remarks If the “condition” is true, loop statements are executed until the WEND
statement is encountered. Then the program execution returns to the WHILE
statement and checks the condition again. If it is still true, the process will be
repeated. Otherwise, the execution continues with the statement following the
WEND statement.

Example WHILE TRANSACTION_COUNT > 0

Data$ = GET_TRANSACTION_DATA$(1)

WRITE_COM(1, Data$)

DEL_TRANSACTION_DATA(1)

WEND

 39

 Chapter 4 BASIC Commands

4.4 COMMANDS FOR STRING PROCESSING

This section describes BASIC commands used to manipulate sequences of ASCII
characters known as strings. In CipherLab BASIC, strings are always variable length,
from null to a maximum of 250.

4.4.1 COMBINING STRINGS

Two strings can be combined with the plus operator “+”. The string following the plus
operator is appended to the string preceding the plus operator. For example,

…

Data$ = DATE$ + TIME$ + EmployeeID$

SAVE_TRANSACTION(Data$)

…

4.4.2 COMPARING STRINGS

Two strings can be compared with the relational operators, see section 3.3.3.

A single character is greater than another character if its ASCII value is greater. For
example, the ASCII value of the letter “B” is greater than the ASCII value of the letter
“A”, so the expression “B” > “A” is true.

When comparing two strings, BASIC looks at the ASCII values of corresponding
characters. The first character where the two strings differ determines the alphabetical
order of the strings. For example, the strings “aaabaa” and “aaaaaaaa” are the same up
to the fourth character in each, “b” and “a”. Since the ASCII value of “b” is larger than
that of “a”, the expression “aaabaa” > “aaaaaaaa” is true.

If there is no difference between the corresponding characters of two strings and they
are the same length, then the two strings are equal. If there is no difference between the
corresponding characters of two strings, but one of the strings is longer, the longer string
is greater than the shorter string. For example, “abc” = “abc” and “aaaaaaaa” > “aaaaa”
are both true expressions.

Leading and trailing blank spaces are significant in comparing strings. For example, the
string “ abc” is less than the string “abc” since a blank space is less than an “a”; on the
other hand, the string “abc ” is greater than the string “abc”.

40

CipherLab 8600 BASIC Programming Part I

4.4.3 GETTING THE LENGTH OF A STRING

LEN

Purpose To return the length of a string.

Syntax A% = LEN(X$)

Remarks “A%” is an integer variable to be assigned to the result.

“X$” may be a string variable, string expression, or string constant.

Note that non-printing characters and blanks are counted.

Example String1$ = “abcde ”

A% = LEN(String1$)

‘A% = 6, including the blank

4.4.4 SEARCHING FOR STRINGS

Searching for a string inside another one is one of the most common string-processing
tasks. INSTR is provided for this task.

INSTR

Purpose To search if one string exists inside another one.

Syntax A% = INSTR([N%,] X$, Y$)

Remarks “A%” is an integer variable to be assigned to the result.

“N%” is a numeric expression in the range of 1 to 255. Optional offset N sets
the position for starting the search.

“X$”, “Y$” may be a string variable, string expression, or string constant.

 If Y$ is found in X$, INSTR returns the position of the first occurrence of Y$
in X$, from the starting point.

 If N is larger than the length of X$ or if X$ is null, of if Y$ cannot be found,
INSTR returns 0.

 If Y$ is null, INSTR returns N (or 1 if N is not specified).

Example String1$ = “11025John Thomas, Accounting Manager”

String2$ = “,”

EmployeeName$ = MID$(String1$, 6, INSTR(String1$, String2$) – 6)

‘ the employee’s name starts at the sixth character

 41

 Chapter 4 BASIC Commands

4.4.5 RETRIEVING PART OF STRINGS

Several commands are provided to take strings apart by returning pieces of a string,
from the left side, or the right side, or the middle of the target string.

LEFT$

Purpose To retrieve a given number of characters from the left side of the target string.

Syntax A$ = LEFT$(X$, N%)

Remarks “A$” is a string variable to be assigned to the result.

“X$” may be a string variable, string expression, or string constant.

“N%” is a numeric expression in the range of 0 to 255.

 If N is larger than the length of X$, the entire string (X$) is returned.

 If N is zero, the null string (with length 0) is returned.

Example String1$ = “11025John Thomas, Accounting Manager”

EmployeeID$ = LEFT$(String1$, 5)

MID$

Purpose To retrieve a given number of characters from anywhere of the target string.

Syntax A$ = MID$(X$, N%[, M%])

Remarks “A$” is a string variable to be assigned to the result.

“X$” may be a string variable, string expression, or string constant.

“N%” and “M%” are numeric expressions in the range of 0 to 255.

This command returns a string of length M characters from X$ beginning with
the Nth character.

 If M is omitted, or if there are fewer than M characters to the right of the
Nth character, all the characters beginning with the Nth character to the
rightmost are returned.

 If M is equal to zero, or if N is greater than the length of X$, then MID$
returns a null string.

Example String1$ = “11025John Thomas, Accounting Manager”

String2$ = “,”

EmployeeName$ = MID$(String1$, 6, INSTR(String1$, String2$) – 6)

‘ the employee’s name starts at the sixth character

42

CipherLab 8600 BASIC Programming Part I

RIGHT$

Purpose To retrieve a given number of characters from the right side of the target
string.

Syntax A$ = RIGHT$(X$, N%)

Remarks “A$” is a string variable to be assigned to the result.

“X$” may be a string variable, string expression, or string constant.

“N%” is a numeric expression in the range of 0 to 255.

 If N is larger than the length of X$, the entire string is returned.

 If N is zero, the null string (with length 0) is returned.

Example String1$ = “11025John Thomas, Accounting Manager”

String2$ = “,”

Title$ = RIGHT$(String1$, LEN(String1$) – INSTR(String1$, String2$))

TRIM_LEFT$

Purpose To return a copy of a string with leading blank spaces stripped away.

Syntax A$ = TRIM_LEFT$(X$)

Remarks “A$” is a string variable to be assigned to the result.

“X$” is a string variable that may contain some space characters at the
beginning.

Example S1$ = TRIM_LEFT$(“ Hello World!”) ‘ S1$ = “Hello World!”

TRIM_RIGHT$

Purpose To return a copy of a string with trailing blank spaces stripped away.

Syntax A$ = TRIM_RIGHT$(X$)

Remarks “A$” is a string variable to be assigned to the result.

“X$” is a string variable that may contain some space characters at the end.

Example S2$ = TRIM_RIGHT$(“Hello World! ”) ‘ S2$ = “Hello World!”

 43

 Chapter 4 BASIC Commands

4.4.6 CONVERTING FOR STRINGS

Several commands are available for converting strings to uppercase or lowercase letters,
as well as converting strings to numbers, and vice versa.

ASC

Purpose To return the decimal value for the ASCII code for the first character of a given
string.

Syntax A% = ASC(X$)

Remarks “A%” is an integer variable to be assigned to the result.

“X$” is a string variable, consisting of characters.

Example A% = ASC(“John Thomas”) ‘ A% = 74

CHR$

Purpose To return the character for a given ASCII value.

Syntax A$ = CHR$(N%)

Remarks “A$” is a string variable to be assigned to the result.

“N%” is a numeric expression in the range of 0 to 255.

Example A$ = CHR$(65) ‘ A$ = “A”

HEX$

Purpose To return a string that represents the hexadecimal value (base 16) of the
decimal argument.

Syntax A$ = HEX$(N%)

Remarks “A$” is a string variable to be assigned to the result.

“N%” is a numeric expression in the range of 0 to 2,147,483,647; it is rounded
to an integer before HEX$(N%) is evaluated.

Example A$ = HEX$(140) ‘ A$ = “8C”

LCASE$

Purpose To return a copy of a string in which all uppercase letters will be converted to
lowercase letters.

Syntax A$ = LCASE$(X$)

Remarks “A$” is a string variable to be assigned to the result.

“X$” may be a string variable, string expression, or string constant.

Example String1$ = “John Thomas”

String2$ = LCASE$(String1$)

‘ String2$ = “john Thomas”

44

CipherLab 8600 BASIC Programming Part I

OCT$

Purpose To convert a decimal numeric expression to a string that represents the value
of the numeric expression in octal notation.

Syntax A$ = OCT$(N%)

Remarks “A$” is a string variable to be assigned to the result.

“N%” is a numeric expression in the range 0 to 2,147,483,647; it is rounded to
an integer before OCT$(N%) is evaluated.

Example A$ = OCT$(24) ‘ A$ = “30”

STR$

Purpose To convert a numeric expression to a string.

Syntax A$ = STR$(N%)

Remarks “A$” is a string variable to be assigned to the result.

“N%” is a numeric expression.

Example String$ = STR$(123)

UCASE$

Purpose To return a copy of a string in which all lowercase letters will be converted to
uppercase letters.

Syntax A$ = UCASE$(X$)

Remarks “A$” is a string variable to be assigned to the result.

“X$” may be a string variable, string expression, or string constant.

Example String1$ = “John Thomas”

String2$ = UCASE$(String1$)

‘ String2$ = “JOHN THOMAS”

VAL

Purpose To return the numeric value of a string expression in long integer form.

Syntax A& = VAL$(X$)

Remarks “A&” is an integer or long integer variable to be assigned to the result.

“X$” is a string that includes numeric characters. If the first character is not
numeric, this command returns 0.

The command VAL will strip leading blanks, tabs, and linefeeds from the
argument string. The return numeric value is in the range of – 2,147,483,648
to 2,147,483,647.

Example ON HOUR_SHARP GOSUB OnHourAlarm

…

OnHourAlarm:

Hour% = VAL(LEFT$(TIME$, 2))

FOR Counter% = 1 TO Hour%

 BEEP(800, 50)

 WAIT(200)

NEXT

RETURN

 45

 Chapter 4 BASIC Commands

VALR

Purpose To convert a string expression to a real number.

Syntax A! = VALR(X$)

Remarks “A!” is a real number variable to be assigned to the result.

“X$” is a string that includes numeric characters.

The precision of the converted result is governed by the command
SET_PRECISION.

Example A! = VALR(“123.45”)

PRINT “A = ”, A!

…

REM A = 123.45

46

CipherLab 8600 BASIC Programming Part I

4.4.7 CREATING STRINGS OF REPEATING CHARACTERS

STRING$

Purpose To return a string containing the specified number of the requested character.

Syntax A$ = STRING$(N%, J%)

A$ = STRING$(N%, X$)

Remarks “A$” is a string variable to be assigned to the result.

“N%” is a numeric expression in the range of 0 to 255, indicating the number
of a character.

“J%” is a numeric expression in the range of 0 to 255, indicating the ASCII
code of a character.

“X$” may be a string variable or string constant.

Example IDX_LENGTH% = 20

Data$ = Name$ + STRING$(IDX_LENGTH% - LEN(Name$),“ ”)

ADD_RECORD$(1, Data$)

‘ padding with space if the length of Name$ is less than IDX_LENGTH%

 47

 Chapter 4 BASIC Commands

4.5 COMMANDS FOR EVENT TRAPPING

An event is an action recognized by the mobile computer, such as a function keystroke
detected (KEY event), a signal received from the serial port (COM event), and so on.
There are two ways to detect the occurrence of an event and reroute the program control
to an appropriate subroutine: polling and trapping.

With event polling, the BASIC program explicitly checks for any event that happens at a
particular point in its execution. For example, the following statements cause the
program to loop back and forth until any key being pressed by user:

Loop:

KeyData$ = INKEY$

IF KeyData$ = “” THEN GOTO Loop

 …

Polling is useful when the occurrence of an event is predictable in the flow of the program.
But if the time of the occurrence of an event is not predictable, trapping becomes the
better alternative because the program will not be paused by the looping statements. For
example, the following statements cause the program rerouting to the Key_F1 subroutine
when the key F1 is pressed at anytime.

ON KEY(1) GOSUB Key_F1

…

Key_F1:

…

4.5.1 EVENT TRIGGERS

This section describes a variety of events that the CipherLab BASIC can trap as well as
the related commands. Below are 9 different events that can be trapped.

1) COM Event: a signal is received from the COM port.

2) ESC Event: the ESC key is pressed.

3) HOUR_SHARP Event: the system time is on the hour.

4) KEY Event: a function key is pressed.

5) MINUTE_SHARP Event: the system time is on the minute.

6) READER Event: a barcode data is decoded.

7) TCPIP Event: any data packet is received via TCP/IP.

8) TIMER Event: a time-out condition of an activated timer.

9) POWER_ON Event: the POWER key is pressed again after powering off the mobile
computer.

48

CipherLab 8600 BASIC Programming Part I

OFF ALL

Purpose To terminate all the event triggers.

Syntax OFF ALL

Remarks To resume the event trigger, call ON event GOSUB…

Example ON READER(1) GOSUB BcrData_1

ON READER(2) GOSUB BcrData_2

ON KEY(1) GOSUB KeyData_1

…

IF BACKUP_BATTERY < BATTERY_LOW% THEN

 OFF ALL

 BEEP(2000, 30)

 CLS

 PRINT “Backup Battery needs to be replaced!”

 Loop:

 GOTO Loop

END IF

…

OFF COM

Purpose To terminate “COM Event Trigger”.

Syntax OFF COM(N%)

Remarks To resume the event trigger, call ON COM… GOSUB…

“N%” is an integer variable, indicating the COM port.

 N% = 1, 2, 4, 5, 7

Example ON COM(1) GOSUB HostCommand

…

HostCommand_1:

OFF COM(1) REM disable the trapping during data processing.

…

ON COM(1) GOSUB HostCommand

 RETURN

 49

 Chapter 4 BASIC Commands

OFF ESC

Purpose To terminate “ESC Event Trigger”.

Syntax OFF ESC

Remarks To resume the event trigger, call ON ESC GOSUB…

Example ON ESC GOSUB Key_Esc

…

Key_Esc:

 OFF ESC

…

ON ESC GOSUB Key_Esc

 RETURN

OFF HOUR_SHARP

Purpose To terminate “HOUR_SHARP Event Trigger”.

Syntax OFF HOUR_SHARP

Remarks To resume the event trigger, call ON HOUR_SHARP GOSUB…

Example OFF HOUR_SHARP

50

CipherLab 8600 BASIC Programming Part I

OFF KEY

Purpose To terminate “KEY Event Trigger”.

Syntax OFF KEY(number%)

Remarks To resume the event trigger, call ON KEY… GOSUB…

 When “number%” is an integer variable in the range of 1 to 12, it indicates
a function key (F1~F12) of the keypad.

 Call OFF KEY(256+KeyCode%) to disable the event triggered by ON
KEY(256+KeyCode%).

Example (1) REM Disable KEY_F1 event trigger

 ON KEY(1) GOSUB KeyEvent

KeyEvent:

PRINT “KEY_F1 is pressed.”

OFF KEY(1)

RETURN

 …

Example (2) REM Disable KEY_F13 event trigger

 ON KEY(256+144) GOSUB KeyEvent

KeyEvent:

PRINT “KEY_F13 is pressed.”

OFF KEY(256+144)

RETURN

 …

OFF MINUTE_SHARP

Purpose To terminate “MINUTE_SHARP Event Trigger”.

Syntax OFF MINUTE_SHARP

Remarks To resume the event trigger, call ON MINUTE_SHARP GOSUB…

Example OFF MINUTE_SHARP

 51

 Chapter 4 BASIC Commands

OFF READER

Purpose To terminate “READER Event Trigger”.

Syntax OFF READER(N%)

Remarks To resume the event trigger, call ON READER… GOSUB…

“N%” is an integer variable, indicating the reader port (usually 1 for mobile
computers).

Example ON READER(1) GOSUB BcrData_1

…

BcrData_1:

OFF READER(1)

BEEP(2000, 5)

Data$ = GET_READER_DATA$(1)

CLS

PRINT Data$

…

OFF TCPIP

Purpose To terminate “TCP/IP Event Trigger”.

Syntax OFF TCPIP

Remarks To resume the event trigger, call ON TCPIP GOSUB…

Example OFF TCPIP

OFF TIMER

Purpose To terminate “TIMER Event Trigger”.

Syntax OFF TIMER(N%)

Remarks To resume the event trigger, call ON TIMER… GOSUB…

“N%” is an integer variable in the range of 1 to 5, indicating the timer ID.

Example ON TIMER(1, 200) GOSUB ClearScreen ‘ TIMER(1) = 2 sec

…

ClearScreen:

 OFF TIMER(1)

 CLS

RETURN

52

CipherLab 8600 BASIC Programming Part I

ON COM … GOSUB …

Purpose To activate “COM Event Trigger”.

Syntax ON COM(N%) GOSUB SubName|SubLabel

Remarks “N%” is an integer variable, indicating the COM port.

 N% = 1, 2, 4, 5, 7

“SubName|SubLabel” is the name or line label of a subroutine.

When data is received from the COM port, a specific subroutine will be
executed.

Example ON COM(1) GOSUB HostCommand

…

HostCommand_1:

OFF COM(1)

…

ON COM(1) GOSUB HostCommand

RETURN

ON ESC GOSUB …

Purpose To activate “ESC Event Trigger”.

Syntax ON ESC GOSUB SubName|SubLabel

Remarks “SubName|SubLabel” is the name or line label of a subroutine.

When the ESC key is pressed, a specific subroutine will be executed.

Example ON ESC GOSUB Key_Esc

…

Key_Esc:

 OFF ESC

 …

 ON ESC GOSUB Key_Esc

 RETURN

 53

 Chapter 4 BASIC Commands

ON HOUR_SHARP GOSUB …

Purpose To activate “HOUR_SHARP Event Trigger”.

Syntax ON HOUR_SHARP GOSUB SubName|SubLabel

Remarks “SubName|SubLabel” is the name or line label of a subroutine.

When the system time is on the hour, a specific subroutine will be executed.

Example ON HOUR_SHARP GOSUB OnHourAlarm

 …

OnHourAlarm:

 CurrentTime$ = TIME$

 Hour% = VAL(LEFT$(CurrentTime$, 2))

 FOR I = 1 TO Hour%

 BEEP(800, 10, 0, 10)

 WAIT(100)

 NEXT

 RETURN

54

CipherLab 8600 BASIC Programming Part I

ON KEY … GOSUB …

Purpose To activate “KEY Event Trigger”.

Syntax ON KEY(number%) GOSUB SubName|SubLabel

Remarks “number%” is an integer variable.

 When “number%” is an integer variable in the range of 1 to 12, it indicates
a function key (F1~F12) of the keypad.

 Call ON KEY(256+KeyCode%) to trigger a key event by key code. Any key
will do as long as its key code can be read by INKEY$. Refer to Key Code
Table.

“SubName|SubLabel” is the name or line label of a subroutine.

When a key is pressed, a specific subroutine will be executed.

ON KEY command allows a total of 12 key event trigger.

If more than 12 key events are required, you may reserve the last one for ON
KEY(256+255). When ON KEY(256+255) is called, a key press can be used to
trigger execution of a corresponding subroutine, as long as its key code is
found less than 0x20 or greater than 0x7F. Use INKEY$ and ASC to get the key
code, and parse key codes in the subroutine.

One key can be used to trigger execution of one subroutine. If a key is set as a
event trigger using ON KEY(256+KeyCode%), the same key cannot be used to
trigger the event of ON KEY(256+255). Likewise, when ON ESC has been
activated, the ESC key cannot be used to trigger the event of ON
KEY(256+255).

Example (1) REM Set KEY_F1 and KEY_F2 as event trigger

 ON KEY(1) GOSUB On_Shift

 ON KEY(2) GOSUB Off_Shift

 …

On_Shift:

 Mode$ = “IN”

 RETURN

Off_Shift:

 Mode$ = “OUT”

 RETURN

Example (2) REM Set KEY_F13 as event trigger

 ON KEY(256+144) GOSUB KeyEvent

KeyEvent:

PRINT “KEY_F13 is pressed.”

 RETURN

 55

 Chapter 4 BASIC Commands

Example (3) REM Parse key codes in subroutine

 ON KEY(256+255) GOSUB KeyEvent

KeyEvent:

 KeyData$ = INKEY$

 A% = ASC(KeyData$)

IF A% = 144 THEN

 PRINT “KEY_F13 is pressed.”

 ELSE IF A% = 145 THEN

 PRINT “KEY_F14 is pressed.”

END IF

 RETURN

56

CipherLab 8600 BASIC Programming Part I

ON MINUTE_SHARP GOSUB …

Purpose To activate “MINUTE_SHARP Event Trigger”.

Syntax ON MINUTE_SHARP GOSUB SubName|SubLabel

Remarks “SubName|SubLabel” is the name or line label of a subroutine.

When the system time is on the minute, a specific subroutine will be executed.

Example …

ON MINUTE_SHARP GOSUB CheckTime

…

CheckTime:

CurrentTime$ = TIME$

 Hour% = VAL(MID$(CurrentTime$, 3, 2))

IF Hour% = 30 THEN GOSUB HalfHourAlarm

RETURN

…

HalfHourAlarm:

BEEP(800, 30)

WAIT(100)

RETURN

 57

 Chapter 4 BASIC Commands

ON POWER_ON GOSUB …

Purpose To activate “POWER_ON Event Trigger”.

Syntax ON POWER_ON GOSUB SubName|SubLabel

Remarks “SubName|SubLabel” is the name or line label of a subroutine.

When the POWER key is pressed again after powering off the mobile computer,
a specific subroutine will be executed.

Example ON POWER_ON GOSUB RESUME_ON

MAIN1:

 …

 LOCATE 8, 1

 PWR_INDEX1&=PWR_INDEX&

 PRINT “[POWER ON]”, PWR_INDEX1&

MAIN2:

 IF PWR_INDEX& > PWR_INDEX1& THEN

 GOTO MAIN1

 END IF

 …

 GOTO MAIN2

RESUME_ON:

 PWR_INDEX&=PWR_INDEX&+1

 WAIT(100)

 RETURN

ON READER … GOSUB …

Purpose To activate “READER Event Trigger”.

Syntax ON READER(N%) GOSUB SubName|SubLabel

Remarks “N%” is an integer variable, indicating the reader port (usually 1 for mobile
computers).

“SubName|SubLabel” is the name or line label of a subroutine.

When data is received from the reader port, a specific subroutine will be
executed.

Example ON READER(1) GOSUB BcrData_1

…

BcrData_1:

OFF READER(1)

BEEP(2000, 5)

 Data$ = GET_READER_DATA$(1)

…

58

CipherLab 8600 BASIC Programming Part I

ON TCPIP GOSUB…

Purpose To activate “TCP/IP Event Trigger”.

Syntax ON TCPIP GOSUB SubLabel

Remarks “SubLabel” is the line label of a subroutine.

When data is received from any TCP/IP connection or some error is taking
place, a specific subroutine will be executed.

 The GET_TCPIP_MESSAGE routine is used to identify the status of TCP/IP
connections.

Example ON TCPIP GOSUB TCPIP_Trigger

 …

TCPIP_Trigger:

 MSG% = GET_TCPIP_MESSAGE

ON TIMER … GOSUB …

Purpose To activate “TIMER Event Trigger”.

Syntax ON TIMER(N%, duration%) GOSUB SubName|SubLabel

Remarks “N%” is an integer variable in the range of 1 to 5, indicating the ordinal
number of timer.

“duration%” is an integer variable, indicating a specified period of time in units
of 10 ms.

“SubName|SubLabel” is the name or line label of a subroutine.

When the system runs out of the time duration specified by user, a specific
subroutine will be executed. Up to five timers can be set in a BASIC program.
Be sure the timer IDs are different. Otherwise, the latter created timer will
overwrite the former one.

Example ON TIMER(1, 200) GOSUB ClearScreen ‘ TIMER(1) = 2 sec

…

ClearScreen:

OFF TIMER(1)

CLS

RETURN

 59

 Chapter 4 BASIC Commands

4.5.2 LOCK AND UNLOCK

Event trapping could be nested. If the event triggers are activated in a BASIC program, it
is possible that an event-driven subroutine can be interrupted by any upcoming events.
Normally, the new event would be processed first.

In some cases where we don’t want the event-driven subroutine to be interrupted by
other events, the commands LOCK and UNLOCK can be used to hold off new events.

LOCK

Purpose To hold all the activated event triggers until they are released by UNLOCK.

Syntax LOCK

Remarks This command can prevent nesting of event triggers. All the activated event
triggers will be disabled until UNLOCK is called.

In the example below, the BASIC program can trap the READER(1) and
READER(2) events and reroute to the subroutines BcrData_1 and BcrData_2
respectively. In BcrData_1, the command LOCK disables all the activated event
triggers so that the subroutine BcrData_1 will not be interrupted by a new
upcoming READER(1) and/or READER(2) event. On the other hand, since LOCK
is not called in BcrData_2, any new coming READER(1) and READER(2) event
will interrupt the ongoing BcrData_2, and therefore, may affect the expected
results.

Example ON READER(1) GOSUB BcrData_1

ON READER(2) GOSUB BcrData_2

…

BcrData_1:

LOCK

BEEP(2000, 5)

Data$ = GET_READER_DATA$(1)

GOSUB AddNewData

UNLOCK

RETURN

…

BcrData_2:

BEEP(2000, 5)

Data$ = GET_READER_DATA$(2)

GOSUB AddNewData

RETURN

60

CipherLab 8600 BASIC Programming Part I

UNLOCK

Purpose To release all the activated event triggers held by LOCK.

Syntax UNLOCK

Remarks This command resumes event processing.

Example Refer to the command LOCK.

 61

 Chapter 4 BASIC Commands

4.6 SYSTEM COMMANDS

This section describes the system commands, such as the commands to change the CPU
running speed, get the device ID, and/or restart the system.

4.6.1 GENERAL

AUTO_OFF

Purpose To set a specified period of time for the system to automatically shut down
user’s program as long as there is no operation in the interval.

Syntax AUTO_OFF(N%)

Remarks “N%” is an integer variable, indicating a specified period of time in units of 1
second.

 If the time interval is set to zero, this function will be disabled.

Example AUTO_OFF(30)

AUTO_OFF(0)

‘ auto off after 30 seconds

‘ disable the AUTO OFF function

See Also POWER_ON, RESTART

62

CipherLab 8600 BASIC Programming Part I

IOPIN_STATUS

Purpose To check the I/O pin status.

Syntax A% = IOPIN_STATUS(N%)

Remarks “A%” is an integer variable to be assigned to the result.

“N%” is an integer variable, indicating the item to be checked with.

N% Meaning

0 It always return 1. (A% = 1)

1 To check whether data transmission is successful or not.

 A% = the length of string, including delimiters.

2 To check whether the mobile computer is connected via cradle, cable
or 5V DC adapter.

 A% = A value that sums up values of each item. Each bit indicates
a certain item as shown below.

Bit Value Item Remarks

0~
3

0x00 NO_CRADLE Not seated in any cradle.

0x04 CHARGER_CRADLE Seated in the Charging &
Communication Cradle.

4 0x00 RS232_CABLE_
DISCONNECTED

RS-232 cable is not connected.

0x10 RS232_CABLE_
CONNECTED

RS-232 cable is connected.

5 0x00 USB_CABLE_
DISCONNECTED

USB cable is not connected.

0x20 USB_CABLE_
CONNECTED

USB cable is connected.

6 0x00 ADAPTER_
DISCONNECTED

5V DC adapter is not
connected.

0x40 ADAPTER
_CONNECTED

5V DC adapter is connected.

 63

 Chapter 4 BASIC Commands

 3 To get the status when mass storage is in use.

 A% = A value that indicates the current status.

A% Meaning

0 USB is disconnected.

1 USB is connected and device is not being accessed.

3 USB is connected and device is being accessed.

4 To get the charging status.

 A% = A value that indicates the current status.

A% Meaning

0 No connection to external power.

1 Battery is being charged.

2 Battery charging done.

3 Charging error occurs.

Example U% = IOPIN_STATUS(2)

‘ *** Detect Cradle ***

V% = BIT_OPERATOR(1, U%, 15)

‘ Get the value of Bit 0~3 to check if any cradle detected

IF V% = 2 THEN ‘ Check if Ethernet cradle

PRINT “Seated in Ethernet cradle”

ENDIF

‘ *** Check if USB cable connected ***

V% = BIT_OPERATOR(1, U%, 32)

‘ Get the value of Bit 5 to check if USB cable detected

IF V% = 32 THEN ‘ 32 = 0x20

PRINT “USB cable connected”

ENDIF

64

CipherLab 8600 BASIC Programming Part I

MENU

Purpose To create a menu.

Syntax A% = MENU(Item$)

Remarks “A%” is an integer variable to be assigned to the result.

 It is the ordinal number of the menu item that user has selected. If the
ESC key is pressed to cancel the operation, it will return 0.

 “Item$” is a string variable, indicating the menu items that are separated and
ended by carriage return (CR, 0x0d).

This command lets user select an item by using (1) the UP/DOWN arrow keys,
and then the ENTER key to confirm the selection, or (2) the shortcut keys.

Note that the following features –

 Shortcut key: & (It is restricted to only one character next to &.)

 Menu title: @ (The title can be put anywhere in the menu string.)

 Display the Up/Down arrow icons

 A menu can have up to 32 items. Each item can be a string with maximum
length of 24 bytes. If the total characters of the string exceed the
maximum characters allowed in one line per screen, the rest will be
displayed in a next line.

Example Below is an illustrative example:

MENU_STR$ = “1 INFORMATION” + CHR$(13)

MENU_STR$ = MENU_STR$ + “@SYSTEM MENU” + CHR$(13)

MENU_STR$ = MENU_STR$ + “&2 SETTINGS” + CHR$(13)

MENU_STR$ = MENU_STR$ + “&3 TESTS” + CHR$(13)

MENU_STR$ = MENU_STR$ + “4 LOAD PROGRAM” + CHR$(13)

MENU_STR$ = MENU_STR$ + “&5 BLUETOOTH MENU” + CHR$(13)

…

S% = MENU(MENU_STR$)

…

 65

 Chapter 4 BASIC Commands

POWER_ON

Purpose To determine whether to restart or resume the program upon powering on.

Syntax POWER_ON(N%)

Remarks “N%” can be 0 or 1.

N% Meaning

0 Program Resume

1 Program Restart

Example POWER_ON(0) ‘ set to resume mode

See Also AUTO_OFF, RESTART

RESTART

Purpose To restart the system.

Syntax RESTART

Remarks This command will terminate the execution of the BASIC program and restart
it.

Example HostCommand$ = READ_COM$(1)

…

IF HostCommand$ = “RESTART” THEN

RESTART

ELSE

…

See Also AUTO_OFF, POWER_ON

66

CipherLab 8600 BASIC Programming Part I

4.6.2 SYSTEM INFORMATION

Being one category of system information, the device type is displayed as “xxxx”; each is
a digit from 0 to 9. The last digit (“0”) is reserved for future use. Refer to
SYSTEM_INFORMATION$(8) below.

Digits x x x x

Types Reader Module Wireless Module RFID & GPS module Reserved

8600 Series

4-digit Device Type Meaning

1st digit 0xxx No reader

1xxx CCD scan engine

2xxx Laser scan engine

3xxx 2D scan engine

2nd digit x0xx N/A

x5xx Bluetooth module only

x8xx 802.11b/g/n + Bluetooth

3rd digit xx1x RFID

xx2x GPS

xx3x RFID + GPS

4th digit xxx0 Reserved

5th digit xxxx-0 29-key

xxxx-1 39-key

DEVICE_ID$

Purpose To get the serial number of the mobile computer.

Syntax A$ = DEVICE_ID$

Remarks This command is to be replaced by SYSTEM_INFORMATION$.

“A$” is a string variable to be assigned to the result. That is, a string for the
serial number will be returned.

 Such information can be checked in System Menu | Information | S/N.

Example PRINT “S/N:”, DEVICE_ID$

 67

 Chapter 4 BASIC Commands

GET_TARGET_MACHINE$

Purpose To get the model number of the target mobile computer.

Syntax A$ = GET_TARGET_MACHINE$

Remarks “A$” is a string variable to be assigned to the result. That is, a string for the
model number will be returned.

Example A$ = GET_TARGET_MACHINE

IF (A$ = “8600”) THEN

…

ELSE IF (A$ = “8630”) THEN

…

ELSE IF (A$ = “8660”) THEN

…

END IF

68

CipherLab 8600 BASIC Programming Part I

SYSTEM_INFORMATION$

Purpose To collect information on components, either hardware or software.

Syntax A$ = SYSTEM_INFORMATION$(index%)

Remarks “A$” is a string variable to be assigned to the result.

“index%” is an integer variable, indicating a specific category of information.

Index% Meaning

1

2

3

4

5

6

7

8

9

Library Version

BASIC Version

Kernel Version

Hardware Version

Manufacture Date

Serial Number

Original Serial Number

Device Type

RFID Version

: C library

: BASIC runtime

: modular components in hardware

10 Buzzer Volume : A$ = “Mute”, “Low”, “Medium” or
“High”

11 USB Charge Current Note : A$ = “500 mA” or “100 mA” or “0 mA”

12 Bootloader version

21

22

23

24

25

26

27

GPS StatusNote

GPS Speed

GPS Latitude

GPS Longitude

GPS SNR

GPS Satellite Number

GPS Altitude

: relative speed, km/h

: ddmm.mmmmN or ddmm.mmmmS

: dddmm.mmmmE or dddmm.mmmmW

: Signal to Noise ratio, average (dB)

: Number of satellites found

: meters

Note that it only allows users to change the USB charging current via System
Menu. The information on GPS speed, latitude, longitude and altitude is not
confirmed until the return value of GPS status becomes 1.

Example LIBVER$ = SYSTEM_INFORMATION$(1)

PRINT “Library :”,LIBVER$

 69

 Chapter 4 BASIC Commands

VERSION

Purpose To write version information to the system.

Syntax VERSION(A$)

Remarks “A$” is a string variable, indicating program name, date, etc.

This command is used to write information of program version to the system.

 Such information can be checked in System Menu | Information | USR.

Note that this command must be on the first line of the program; otherwise, it
will be ignored. The string for version information cannot exceed 15 characters.

Example VERSION(“CipherBASIC 2.0”)

70

CipherLab 8600 BASIC Programming Part I

4.6.3 SECURITY

SYSTEM_PASSWORD

Purpose To set the password protection for entering System Menu.

Syntax SYSTEM_PASSWORD(A$)

Remarks “A$” is a string constant or variable, representing the password.

Example SYSTEM_PASSWORD(“12345”)

 71

 Chapter 4 BASIC Commands

4.6.4 PROGRAM MANIPULATION

These two functions can be used as the basis of remote update of BASIC applications.
Programs can be downloaded to the file system and activated immediately or later.

DOWNLOAD_BASIC

Purpose To read a new BASIC program from a specific COM port and store it to a
specified transaction file.

Syntax A% = DOWNLOAD_BASIC(file%, port%)

Remarks “A%” is an integer variable to be assigned to the result.

Value Meaning

0 Success

-1 Invalid transaction file

-2 Invalid COM port

-3 No response from COM port

-4 Fail to read version of BASIC program

-5 Fail to read program header (.ini)

-6 Fail to read object file (.syn)

-7 Write error – insufficient space in SRAM.

 “file%” is an integer variable, indicating which transaction file in the file
system the program is saved to.

Value Meaning

1~6 Application program saved to file system

18 Application program saved to SRAM, which is not accessible to
users but can only be used with UPDATE_BASIC(18)

“port%” is an integer variable, indicating which COM port the program is to be
read from.

Value Meaning

1 RS-232

2 Bluetooth

5 USB Virtual COM

Note that the transaction file to receive the program must be empty or cleared
out, for example, using EMPTY_TRANSACTION_EX(). Use SET_COM() and
SET_COM_TYPE() to set the COM port properties. To start with the download
process on your computer, run the download utility ProgLoad.exe or go to
Compile | Download via the BASIC Compiler.

Example Error_Code% = DOWNLOAD_BASIC(6, 1)

72

CipherLab 8600 BASIC Programming Part I

UPDATE_BASIC

Purpose To have a BASIC program become the active program.

Syntax A% = UPDATE_BASIC(file%)

Remarks “A%” is an integer variable to be assigned to the result.

Value Meaning

-1 Invalid file number

-2 Invalid file format

-8 No free space in flash before writing

-9 Fail to read program header (.ini)

-10Note Fail to read object file (.syn)

-11 RAM size cannot fit.

-12Note Fail to write new program into flash due to insufficient space,
illegal address or the sector of flash cannot be erased.

-13Note Fail to write program header after new program written into flash

-14 Cannot find file on SD card

-15 Cannot read file on SD card

-16 File on SD card with filename length over 64 bytes

Note that it may not return the error code if the original BASIC program has
been overwritten.

“file%” is an integer variable, indicating from which transaction file the
program is copied to the active area in flash memory. If successful, it will
restart automatically.

Value Meaning

1~6 Application program saved in file system

 Source file will be kept unless you erase it manually.

18 Application program (.tkn) saved in SRAM via FTP or
DOWNLOAD_BASIC(18)

 Source file will be removed after execution.

19 Runtime program (.bin) saved in SRAM via FTP

 Source file will be removed after execution, but file system
will be kept.

20~39 Application program (.tkn, or .syn, .ini) saved on SD card

 A .tkn file takes the first priority.

 Source file will be kept after execution.

 73

 Chapter 4 BASIC Commands

 40~59 Runtime program(.bin or .shx) saved on SD card

 A .bin file takes the first priority.

 Source file and file system will be kept after execution.

 If the source file is on SD card, “file%” must be set in a specific range, as
shown above. You must follow these steps to make it active —

Step 1: Rename the program by prefixing a number in the specific
range. For example,

EchoTest.ini -> 25EchoTest.ini

EchoTest.syn -> 25EchoTest.syn

Step 2: Copy the header file and object file to the specified
directory “\Program” on SD card.

Step 3: Call UPDATE_BASIC(25). System will search the file whose
name starts with “25” in the directory “\Program”.

Note: (1) If a file “25*.tkn” is found on SD card, it takes
the first priority. That is, “25*.tkn” will become the active
program. (2) When more than one file whose filename is
prefixed with the same number, for example, 40x.bin and
40a.bin, their entry in the file allocation table (FAT) decides
which one takes the first priority. That is, only the first
entry found works for UPDATE_BASIC(40).

Example Error_Code% = UPDATE_BASIC(3)

74

CipherLab 8600 BASIC Programming Part I

BASIC PROGRAM – FORMAT OF TRANSACTION FILE

A complete BASIC program consists of one header file (.ini) and one object file (.syn). To
ensure the execution of a BASIC program, both files must be stored correctly into one
transaction file. Examples are provided below illustrating the correct format and incorrect
format of transaction file.

Warning: The header file (.ini) is 256 bytes and must be saved before saving the
object file.

 It is acceptable that the header file is followed by the object file in the same record.

 It is acceptable that the header file takes one record, and the object file starts from a
new record. Refer to the drawings below, space occurs with the object file is allowed
in several cases.

 75

 Chapter 4 BASIC Commands

 It is acceptable that the header file is split into multiple records and the last part is
followed by the object file.

 It is unacceptable that the header file is saved after the object file or split into
multiple parts in the same record. Space occurs at the beginning or in the middle of a
record is considered wrong format.

 It is unacceptable that the object file is split into multiple parts in the same record.
Space occurs at the beginning or in the middle of a record is considered wrong
format.

Non-fixed length

76

CipherLab 8600 BASIC Programming Part I

4.7 BARCODE READER COMMANDS

The CipherLab mobile computers are able to read barcode data from the reader ports.
This section describes the BASIC commands that are related to the reader ports of the
mobile computers.

Commands for triggering the READER event: OFF READER(1), ON READER(1)
GOSUB…

The barcode reader module provides options for a number of scan engines as listed
below.

Scan Engine: “” means supported

1D

CCD (linear imager) 

Standard Laser 

Long Range Laser (LR) ---

Extra Long Range Laser (ELR) ---

2D 2D imager 

4.7.1 GENERAL

To enable barcode decoding capability in the system, the first thing is that the scanner
port must be initialized by calling ENABLE READER(). After the scanner port is
initialized, call ON READER(1) GOSUB to trigger the barcode decoding event.

 For CCD or Laser scan engine, the barcode decoding routines consist of 5 functions:
ENABLE READER(),GET_READER_DATA$(), DISABLE READER(), OFF
READER(1), ON READER(1) GOSUB.

 For 2D or (Extra) Long Range Laser scan engine, it is necessary to enable new
settings by calling READER_CONFIG() before decoding.

Note: (1) When 2D barcode data exceeds 255 bytes, it cannot be received completely in
a string. You need to repeatedly call GET_READER_DATA$() to receive data until
there is no data left out.
 (2) Because the length of each record in the DBF file is limited to 250 bytes, this
index sequential file structure cannot be applied when dealing with 2D data that is
longer than 250 bytes.

DISABLE READER

Purpose To disable the reader ports of the mobile computer.

Syntax DISABLE READER(N%)

Remarks “N%” is an integer variable, indicating the reader port.

 N% = 1 for mobile computers.

Example DISABLE READER(1)

 77

 Chapter 4 BASIC Commands

ENABLE READER

Purpose To enable the reader ports of the mobile computer.

Syntax ENABLE READER(N%)

Remarks “N%” is an integer variable, indicating the reader port.

 N% = 1 for mobile computers.

The reader ports are disabled by default. To enable barcode decoding function,
the reader ports have to be enabled by ENABLE READER.

Example ENABLE READER(1)

ON READER(1) GOSUB Bcr_1

…

Bcr_1:

Data$ = GET_READER_DATA$(1)

RETURN

GET_READER_DATA$

Purpose To get data that is read from a specified reader port.

Syntax A$ = GET_READER_DATA$(N%)

Remarks “A$” is a string variable to be assigned to the result.

“N%” is an integer variable, indicating t the reader port.

 N% = 1 for mobile computers.

Usually, ON READER GOSUB… is used to trap the event when the data is
transmitted to the mobile computer through the reader port, and then
GET_READER_DATA$ is used in a subroutine to get the reader data.

Example ENABLE READER(1)

ON READER(1) GOSUB Bcr_1

…

Bcr_1:

Data$ = GET_READER_DATA$(1)

RETURN

READER_CONFIG

Purpose To enable new settings on the scan engine after calling READER_SETTING().

Syntax READER_CONFIG

Remarks For new reader settings to take effect on any of the following readers, it is
necessary to call this routine.

 2D scan engine

Example See sample code below.

78

CipherLab 8600 BASIC Programming Part I

SAMPLE CODE

 READER_SETTING(5, 0)

 READER_SETTING(132, 0)

 READER_CONFIG ‘ enable the new settings for 2D or

 ‘ Long Range Laser engines

 ENABLE READER(1) ‘ enable the reader

 ON READER(1) GOSUB G_Reader_Data

 CLS

 GOSUB MainScreen

MainLoop:

 Data$ = GET_READER_DATA$(1)

 IF LEN(Data$) <> 0 THEN ‘ check if there are valid data

 GOSUB MainScreen

 END IF

 WAIT(10) ‘ for power saving

 GOTO MainLoop

MainScreen:

 CLS

 CodeLEN% = LEN(Data$)

 PRINT “ Reader Testing”

 PRINT “CODE TYPE:”

 PRINT CodeType$

 PRINT “Code Length:”, CodeLEN%

 PRINT “Count:”, Count%

 PRINT “Data:”, Data$

GetMoreData:

 Data$ = GET_READER_DATA$(1) ‘ check if there are more data

 IF LEN(Data$) <> 0 THEN ‘ if yes, meaning totally the data

 79

 Chapter 4 BASIC Commands

 ‘ is longer than 255 bytes

 ‘ (must be 2D code)

 CodeLEN% = CodeLEN%+LEN(Data$)

 PRINT Data$

 GOTO GetMoreData

 END IF

 LOCATE 4, 1

 PRINT “Code Length:”, CodeLEN%

 RETURN

G_Reader_Data:

 BEEP(4000, 8)

 Count% = Count% + 1

 IF CODE_TYPE = 65 THEN

 CodeType$ = “Code 39”

 ELSE IF CODE_TYPE = 66 THEN

 CodeType$ = “Italian Pharmacode”

 ELSE IF CODE_TYPE = 67 THEN

 CodeType$ = “CIP 39”

 ELSE IF CODE_TYPE = 68 THEN

 CodeType$ = “Industrial 25”

 ELSE IF CODE_TYPE = 69 THEN

 CodeType$ = “Interleave 25”

 ELSE IF CODE_TYPE = 70 THEN

 CodeType$ = “Matrix 25”

 ELSE IF CODE_TYPE = 71 THEN

 CodeType$ = “Codabar”

80

CipherLab 8600 BASIC Programming Part I

 ELSE IF CODE_TYPE = 72 THEN

 CodeType$ = “Code 93”

 ELSE IF CODE_TYPE = 73 THEN

 CodeType$ = “Code 128”

 ELSE IF CODE_TYPE = 74 THEN

 CodeType$ = “UPCE”

 ELSE IF CODE_TYPE = 75 THEN

 CodeType$ = “UPCE with Addon 2”

 ELSE IF CODE_TYPE = 76 THEN

 CodeType$ = “UPCE with Addon 5”

 ELSE IF CODE_TYPE = 77 THEN

 CodeType$ = “EAN 8”

 ELSE IF CODE_TYPE = 78 THEN

 CodeType$ = “EAN 8 with Addon 2”

 ELSE IF CODE_TYPE = 79 THEN

 CodeType$ = “EAN 8 with Addon 5”

 ELSE IF CODE_TYPE = 80 THEN

 CodeType$ = “EAN13”

 ELSE IF CODE_TYPE = 81 THEN

 CodeType$ = “EAN13 with Addon 2”

 ELSE IF CODE_TYPE = 82 THEN

 CodeType$ = “EAN13 with Addon 5”

 ELSE IF CODE_TYPE = 83 THEN

 CodeType$ = “MSI”

 ELSE IF CODE_TYPE = 84 THEN

 CodeType$ = “Plessey”

 ELSE IF CODE_TYPE = 85 THEN

 CodeType$ = “EAN 128”

 ELSE IF CODE_TYPE = 87 THEN

 81

 Chapter 4 BASIC Commands

 CodeType$ = “GTIN”

 ELSE IF CODE_TYPE = 90 THEN

 CodeType$ = “Telepen”

 ELSE IF CODE_TYPE = 91 THEN

 CodeType$ = “RSS”

 END IF

 RETURN

82

CipherLab 8600 BASIC Programming Part I

4.7.2 CODE TYPE

The following tables list the values of the CodeType variable.

CodeType Table I:

DEC ASCII Symbology Supported by Scan Engine

63 ? Coop 25 CCD, Laser

64 @ ISBT 128 CCD, Laser

65 A Code 39 CCD, Laser

66 B Italian Pharmacode CCD, Laser

67 C CIP 39 (French Pharmacode) CCD, Laser

68 D Industrial 25 CCD, Laser

69 E Interleaved 25 CCD, Laser

70 F Matrix 25 CCD, Laser

71 G Codabar (NW7) CCD, Laser

72 H Code 93 CCD, Laser

73 I Code 128 CCD, Laser

74 J UPC-E0 / UPC-E1 CCD, Laser

75 K UPC-E with Addon 2 CCD, Laser

76 L UPC-E with Addon 5 CCD, Laser

77 M EAN-8 CCD, Laser

78 N EAN-8 with Addon 2 CCD, Laser

79 O EAN-8 with Addon 5 CCD, Laser

80 P EAN-13 / UPC-A CCD, Laser

81 Q EAN-13 with Addon 2 CCD, Laser

82 R EAN-13 with Addon 5 CCD, Laser

83 S MSI CCD, Laser

84 T Plessey CCD, Laser

85 U GS1-128 (EAN-128) CCD, Laser

86 V Reserved ---

87 W Reserved ---

88 X Reserved ---

89 Y Reserved ---

90 Z Telepen CCD, Laser

91 [GS1 DataBar (RSS) CCD, Laser

92 \ Reserved ---

93] Reserved ---

 83

 Chapter 4 BASIC Commands

CodeType Table II:

DEC ASCII Symbology Supported by Scan Engine

47 / Composite_CC_A 2D

55 7 Composite_CC_B 2D

64 @ ISBT 128 2D

65 A Code 39 2D

66 B Code 32 (Italian Pharmacode) 2D

67 C N/A ---

68 D N/A ---

69 E Interleaved 25 2D

70 F Matrix 25 2D

71 G Codabar (NW7) 2D

72 H Code 93 2D

73 I Code 128 2D

74 J UPC-E0 2D

75 K UPC-E with Addon 2 2D

76 L UPC-E with Addon 5 2D

77 M EAN-8 2D

78 N EAN-8 with Addon 2 2D

79 O EAN-8 with Addon 5 2D

80 P EAN-13 2D

81 Q EAN-13 with Addon 2 2D

82 R EAN-13 with Addon 5 2D

83 S MSI 2D

84 T N/A ---

85 U GS1-128 (EAN-128) 2D

86 V Reserved ---

87 W Reserved ---

88 X Reserved ---

89 Y Reserved ---

90 Z Reserved ---

91 [GS1 DataBar Omnidirectional (RSS-14) 2D

92 \ GS1 DataBar Limited (RSS Limited) 2D

93] GS1 DataBar Expanded (RSS Expanded) 2D

94 ^ UPC-A 2D

95 _ UPC-A Addon 2 2D

84

CipherLab 8600 BASIC Programming Part I

96 ‘ UPC-A Addon 5 2D

97 a UPC-E1 2D

98 b UPC-E1 Addon 2 2D

99 c UPC-E1 Addon 5 2D

100 d TLC-39 (TCIF Linked Code 39) 2D

101 e Trioptic (Code 39) 2D

102 f Bookland (EAN) 2D

103 g Code 11 2D

104 h Code 39 Full ASCII 2D

105 i IATANote (25) 2D

106 j Industrial 25 (Discrete 25) 2D

107 k PDF417 2D

108 l MicroPDF417 2D

109 m Data Matrix 2D

110 n Maxicode 2D

111 o QR Code 2D

112 p US Postnet 2D

113 q US Planet 2D

114 r UK Postal 2D

115 s Japan Postal 2D

116 t Australian Postal 2D

117 u Dutch Postal 2D

118 v Composite Code

Composite_CC_C

2D

119 w Macro PDF417 2D

120 x Macro MicroPDF417 2D

121 y Chinese 25 2D

122 z Aztec 2D

123 { MicroQR 2D

124 | USPS 4CB / One Code / Intelligent Mail 2D

125 } UPU FICS Postal 2D

126 ~ Coupon Code 2D

Note: IATA stands for International Air Transport Association, and this barcode type is
used on flight tickets.

 85

 Chapter 4 BASIC Commands

CODE_TYPE

Purpose To get the type of symbology being decoded upon a successful scan.

Syntax A% = CODE_TYPE

Remarks “A%” is an integer variable to be assigned to the result.

Refer to the above table for code types.

Example …

CheckCodeType:

IF CODE_TYPE = 65 THEN

 BcrType$ = “Code 39”

ELSE IF CODE_TYPE = 66 THEN

 BcrType$ = “Italian Pharmacode”

…

END IF

PRINT “Code Type:”, BcrType$

RETURN

See Also GET_READER_SETTING, READER_SETTING

86

CipherLab 8600 BASIC Programming Part I

4.7.3 READER SETTINGS

Refer to Appendix I for two tables that describe the details of the reader settings.

 Table I is for the use of CCD or Laser scan engine.
 Table II is for the use of 2D scan engine.

Note: For 2D scan engine, it is necessary to call READER_CONFIG() to enable new
settings.

For specific symbology parameters, refer to Appendix II; for scanner parameters, refer to
Appendix III.

GET_READER_SETTING

Purpose To get the value of a specified parameter of the barcode settings.

Syntax A% = GET_READER_SETTING(N%)

Remarks “A%” is an integer variable to be assigned to the result.

“N%” is an integer variable, indicating the index number of a parameter. (cf.
READER_SETTING)

Example Setting1% = GET_READER_SETTING(1)

IF Setting1% = 1 THEN

PRINT “Code 39 readability is enabled.”

ELSE

PRINT “Code 39 readability is disabled.”

END IF

See Also CODE_TYPE,

READER_SETTING

Purpose To set the value of a specified parameter of the barcode settings.

Syntax READER_SETTING(N1%, N2%)

Remarks “N1%” is an integer variable, indicating the index number of a parameter.

“N2%” is an integer variable, indicating the value to be set to a parameter.

A set of parameters called barcode settings determines how the decoder will
decode the barcode data. The initial values of the barcode settings are given by
the Barcode Settings Window of the BASIC Compiler. The user can reset the
values by calling READER_SETTING in a BASIC program.

Refer to Appendix I, II, and III for details of the settings.

Example READER_SETTING(1, 1) ‘ Code 39 readability is enabled.

See Also CODE_TYPE, READER_CONFIG

 87

 Chapter 4 BASIC Commands

4.8 RFID READER COMMANDS

The mobile computer allows an optional RFID reader that can coexist with the barcode
reader, if there is any. The RFID reader supports read/write operations, which depend on
the tags you are using. The supported labels include ISO 15693, Icode®, ISO 14443A,
and ISO 14443B.

Warning: Before programming, you should study the specifications of RFID tags.

Currently, the performance of many tags has been confirmed, and the results are listed
below.

Tag Type UID only Read Page Write Page

TAG_MifareISO14443A

Mifare Standard 1K   

Mifare Standard 4K   

Mifare Ultralight   

Mifare DESFire  --- ---

Mifare S50   

SLE44R35  --- ---

SLE66R35   

TAG_SR176

SRIX 4K   

SR176   

TAG_ISO15693

ICODE SLI   

SRF55V02P  --- ---

SRF55V02S  --- ---

SRF55V10P  --- ---

TI Tag-it HF-I   

TAG_Icode

ICODE   

Note: These are the results found with RFID module version 1.0 ( for features
supported), and you may use SYSTEM_INFORMATION$(9) to find out version
information.

88

CipherLab 8600 BASIC Programming Part I

4.8.1 VIRTUAL COM

The algorithm for programming the RFID reader simply follows the commands related to
COM ports. The virtual COM port for RFID is defined as COM4. Thus,

 OPEN_COM(4) : enable the RFID module
 CLOSE_COM(4) : disable the RFID module
 A$ = READ_COM$(4) : read data from an RFID tag
 WRITE_COM(4) : write data to an RFID tag
 ON COM(4) GOSUB… and OFF COM(4)

4.8.2 DATA FORMAT

Before reading and writing operations, the parameters of RFID must be specified. The
settings of format are described below.

Parameter Description

TagType&

Bit 31 ~ 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved ISO
14443B

SR176 ISO
14443A

Icode Tagit ISO
15693

start% The starting byte of data for the read/write operation.

MaxLen%  Read: The maximum data length (1~255).

 0 refers to reading UID data only.

 Write: Reserved (Any integer value is acceptable.)

When an RFID tag is read, the data string includes Tag Type, UID, and Data. The data
format for READ_COM$(4) is as follows.

Byte 1 Byte 2 ~ 18 Byte 19 ~ xx

Tag Type ‘V’

‘T’

‘I’

‘M’

‘S’

‘Z’

TAG_ISO15693

TAG_Tagit

TAG_Icode

TAG_MifareISO14443A

TAG_SR176

TAG_ISO14443B

 Tag UID (SN)

 Data

 89

 Chapter 4 BASIC Commands

SET_RFID_READ

Purpose To set the reading parameters of RFID.

Syntax SET_RFID_READ(TagType&, start%, MaxLen%)

Remarks The RFID reader cannot read until the parameters are specified.

Example SET_RFID_READ(1, 0, 20)

…

…

A$ = READ_COM$(4)

‘ read tag type ISO 15693

‘ starting from byte 0 of data

‘ data length 20 bytes

See Also CLOSE_COM, OPEN_COM, READ_COM$, WRITE_COM

SET_RFID_WRITE

Purpose To set the writing parameters of RFID.

Syntax SET_RFID_WRITE(TagType&, start%, MaxLen%)

Remarks The RFID reader cannot write until the parameters are specified.

Example OPEN_COM(4)

SET_RFID_WRITE(63, 6, 32)

…

…

WRITE_COM(4, W_STR$)

‘ all supported tag types are enabled

‘ write starting from byte 6 of data

‘ any value for data length

See Also CLOSE_COM, OPEN_COM, READ_COM$, WRITE_COM

90

CipherLab 8600 BASIC Programming Part I

4.8.3 AUTHENTICATION

GET_RFID_KEY

Purpose To get the security key of some specific tags.

Syntax A$ = GET_RFID_KEY(TagType %)

Remarks “A$” is a string variable to be assigned to the result.

“TagType%” is an integer variable, indicating a specific tag type that the
security key is applied to.

This function is used to get the security key for some specific tags, such as
Mifare Standard 1K/4K and SLE66R35 tags.

Example MKEY$ = GET_RFID_KEY(4) ' get security key for MifareISO14443A tags

SET_RFID_KEY

Purpose To set the security key of some specific tags.

Syntax SET_RFID_KEY(TagType%, KeyString$, KeyType%)

Remarks “TagType%” is an integer variable, indicating a specific tag type that the
security key is applied to.

TAGTYPE% Meaning

1 TAG_ISO15693

2 TAG_Tagit

3 TAG_Icode

4 TAG_MifareISO14443A

5 TAG_SR176

6 TAG_ISO14443B

“KeyString$” is a string variable, indicating the security key you set.

“KeyType%” is an integer variable, indicating a specific key type.

KEYTYPE% Meaning

1 KEYA (Key A)

2 KEYB (Key B)

This function is used to set security key for some specific tags, such as Mifare
Standard 1K/4K and SLE66R35 tags.

Example SET_RFID_KEY(4, “111111111111”, 1) ' set security key (KEY A) for
Mifare ISO14443A tags

 91

 Chapter 4 BASIC Commands

4.9 KEYBOARD WEDGE COMMANDS

You may use Bluetooth HID or USB HID for the wedge application. Refer to the table
below and Part II: Appendix IV Examples.

Wedge Options Related Functions

Bluetooth HID or USB HID SET_WEDGE

OPEN_COM

SET_COM

SET_COM_TYPE

CLOSE_COM

GET_NET_STATUS

WRITE_COM

WRITE_COM() is governed by a set of parameters called WedgeSetting$. The
command SET_WEDGE is used to configure these parameters.

4.9.1 DEFINITION OF THE WEDGESETTING ARRAY

WedgeSetting$ is a 3-element character array passed to SET_WEDGE to describe the
characteristics of the keyboard wedge interface. In a BASIC program, WedgeSetting$ can
be defined as follows.

WedgeSetting$ = Wedge_1$ + Wedge_2$ + Wedge_3$

The functions of the parameters Wedge_1$, Wedge_2$, and Wedge_3$ are described in
the following subsections.

Parameter Bit Description

Wedge_1$ 7 - 0 KBD / Terminal Type

Wedge_2$ 7 1: Enable capital lock auto-detection

0: Disable capital lock auto-detection

Wedge_2$ 6 1: Capital lock on

0: Capital lock off

92

CipherLab 8600 BASIC Programming Part I

Wedge_2$ 5 1: Ignore alphabets' case

0: Alphabets are case-sensitive

Wedge_2$ 4 - 3 00: Normal

10: Digits at lower position

11: Digits at upper position

Wedge_2$ 2 - 1 00: Normal

10: Capital lock keyboard

11: Shift lock keyboard

Wedge_2$ 0 1: Use numeric keypad to transmit digits

0: Use alpha-numeric key to transmit digits

Wedge_3$ 7 - 0 Inter-character delay

1ST ELEMENT: KBD / TERMINAL TYPE

The first element determines which type of keyboard wedge is applied. The possible
value is listed as follows.

Value Terminal Type Value Terminal Type

0 Null (Data Not Transmitted) 21 PS55 002-81, 003-81

1 PCAT (US) 22 PS55 002-2, 003-2

2 PCAT (FR) 23 PS55 002-82, 003-82

3 PCAT (GR) 24 PS55 002-3, 003-3

4 PCAT (IT) 25 PS55 002-8A, 003-8A

5 PCAT (SV) 26 IBM 3477 TYPE 4 (Japanese)

6 PCAT (NO) 27 PS2-30

7 PCAT (UK) 28 Memorex Telex 122 Keys

8 PCAT (BE) 29 PCXT

 93

 Chapter 4 BASIC Commands

9 PCAT (SP) 30 IBM 5550

10 PCAT (PO) 31 NEC 5200

11 PS55 A01-1 32 NEC 9800

12 PS55 A01-2 33 DEC VT220, 320, 420

13 PS55 A01-3 34 Macintosh (ADB)

14 PS55 001-1 35 Hitachi Elles

15 PS55 001-81 36 Wyse Enhance KBD (US)

16 PS55 001-2 37 NEC Astra

17 PS55 001-82 38 Unisys TO-300

18 PS55 001-3 39 Televideo 965

19 PS55 001-8A 40 ADDS 1010

20 PS55 002-1, 003-1

For example, if the terminal type is PCAT (US), then the first element of the
WedgeSetting can be defined as follows.

Wedge_1$ = CHR$(1)

2ND ELEMENT

Capital Lock Auto-Detection

Keyboard Type Capital Lock Auto-Detection

PCAT (all available
languages), PS2-30, PS55,
or Memorex Telex

Enabled Disabled

The command WRITE_COM can
automatically detect the capital
lock status of keyboard. That is, it
will ignore the capital lock status
setting and perform
auto-detection when transmitting
data.

The command WRITE_COM will
transmit alphabets according to
the setting of the capital lock
status.

None of the above The command WRITE_COM will transmit the alphabets according
to the setting of the capital lock status, even though the
auto-detection setting is enabled.

 To enable “Capital Lock Auto-Detection”, add 128 to the value of the second element of
WedgeSetting$ (Wedge_2$).

94

CipherLab 8600 BASIC Programming Part I

Capital Lock Status Setting

In order to send alphabets with correct case (upper or lower case), the command WRITE_COM
must know the capital lock status of keyboard when transmitting data.

Incorrect capital lock setting will result in different letter case (for example, 'A' becomes 'a', and
'a' becomes 'A').

 To set “Capital Lock ON”, add 64 to the value of the second element of WedgeSetting$
(Wedge_2$).

Alphabets' Case

The setting of this bit affects the way the command WRITE_COM transmits alphabets.
WRITE_COM can transmit alphabets according to their original case (case-sensitive) or just
ignore it. If ignoring case is selected, it will always transmit alphabets without adding shift key.

 To set “Ignore Alphabets Case”, add 32 to the value of the second element of
WedgeSetting$ (Wedge_2$).

Digits' Position

This setting can force the command WRITE_COM to treat the position of the digit keys on the
keyboard differently. If this setting is set to upper, it will add shift key when transmitting digits.

This setting will be effective only when the keyboard type selected is PCAT (all available
language), PS2-30, PS55, or Memorex Telex. However, if the user chooses to send digits using
numeric keypad, this setting is meaningless.

 To set “Lower Position”, add 16 to the value of the second element of WedgeSetting$
(Wedge_2$).

 To set “Upper Position”, add 24 to the value of the second element of WedgeSetting$
(Wedge_2$).

Shift / Capital Lock Keyboard

This setting can force the command WRITE_COM to treat the keyboard type to be a shift lock
keyboard or a capital lock keyboard. This setting will be effective only when the keyboard type
selected is PCAT (all available languages), PS2-30, PS55, or Memorex Telex.

 To set “Capital Lock”, add 4 to the value of the second element of WedgeSetting$
(Wedge_2$).

 To set “Shift Lock”, add 6 to the value of the second element of WedgeSetting$ (Wedge_2$).

Digit Transmission

This setting instructs the command WRITE_COM which group of keys is used to transmit digits,
whether to use the digit keys on top of the alphabetic keys or use the digit keys on the numeric
keypad.

 To set “Use Numeric Keypad to Transmit Digits”, add 2 to the value of the second element of
WedgeSetting$ (Wedge_2$).

Note: DO NOT set “Digits’ Position” and “Shift/Capital Lock Keyboard” unless you are
certain to do so.

 95

 Chapter 4 BASIC Commands

3RD ELEMENT: INTER-CHARACTER DELAY

A millisecond inter-character delay, in the range of 0 to 255, can be added before
transmitting each character. This is used to provide some response time for PC to
process keyboard input.

For example, to set the inter-character delay to be 10 millisecond, the third element of
WedgeSetting$ can be defined as,

Wedge_3$ = CHR$(10)

96

CipherLab 8600 BASIC Programming Part I

4.9.2 COMPOSITION OF OUTPUT STRING

The mapping of the keyboard wedge characters is as listed below. Each character in the
output string is translated by this table when the command WRITE_COM transmits
data.

 00 10 20 30 40 50 60 70 80

0 F2 SP 0 @ P ` p 

1 INS F3 ! 1 A Q a q 

2 DLT F4 " 2 B R b r 

3 Home F5 # 3 C S c s 

4 End F6 $ 4 D T d t 

5 Up F7 % 5 E U e u 

6 Down F8 & 6 F V f v 

7 Left F9 ' 7 G W g w 

8 BS F10 (8 H X h x 

9 HT F11) 9 I Y i y 

A LF F12 * : J Z j z

B Right ESC + ; K [k {

C PgUp Exec , < L \ l |

D CR CR* - = M] m }

E PgDn . > N ^ n ~

F F1 / ? O _ o Dly ENTER*

Note: (1) Dly: Delay 100 millisecond
 (2) ~: Digits of numeric keypad
 (3) CR*/ENTER*: ENTER key on the numeric keypad

The command WRITE_COM can not only transmit simple characters as shown above,
but also provide a way to transmit combination key status, or even direct scan codes.
This is done by inserting some special command codes in the output string. A command
code is a character whose value is between 0xC0 and 0xFF.

0xC0 : Indicates that the next character is to be treated as scan code. Transmit it as it is,
no translation required.

0xC0 | 0x01 : Send next character with Shift key.

0xC0 | 0x02 : Send next character with Left Ctrl key.

0xC0 | 0x04 : Send next character with Left Alt key.

 97

 Chapter 4 BASIC Commands

0xC0 | 0x08 : Send next character with Right Ctrl key.

0xC0 | 0x10 : Send next character with Right Alt key.

0xC0 | 0x20 : Clear all combination status key after sending the next character.

For example, to send [A] [Ctrl-Insert] [5] [scan code 0x29] [Tab] [2] [Shift-Ctrl-A] [B]
[Alt-1] [Alt-2-Break] [Alt-1] [Alt-3], the following characters are inserted into the string
supplied to the command WRITE_COM.

0x41, 0xC2, 0x01, 0x35, 0xC0, 0x29, 0x09, 0x32, 0xC3, 0x41, 0x42, 0xC4, 0x31
0xE4, 0x32, 0xC4, 0x31, 0xC4, 0x33

Note: (1) The scan code 0x29 is actually a space for PCAT, Alt-12 is a form feed
character, and Alt-13 is an Enter.
 (2) The break after Alt-12 is necessary, if omitted the characters will be treated as
Alt-1213 instead of Alt-12 and Alt-13.

The following instructions can be called in the BASIC program to send the above string
through the keyboard wedge interface.

...

Data_1$ = CHR$(65) + CHR$(194) + CHR$(1) + CHR$(53) + CHR$(192) + CHR$(41)

Data_2$ = CHR$(9) + CHR$(50) + CHR$(195) + CHR$(65) + CHR$(66)

Data_3$ = CHR$(196) + CHR$(49) + CHR$(228) + CHR$(50) + CHR$(196) + CHR$(49)

Data_4$ = CHR$(196) + CHR$(51)

DataString$ = Data_1$ + Data_2$ + Data_3$ + Data_4$

WRITE_COM(DataString$)

...

98

CipherLab 8600 BASIC Programming Part I

SET_WEDGE

Purpose To configure the keyboard wedge interface.

Syntax SET_WEDGE(WedgeSetting$)

Remarks “WedgeSetting$” is a 3-element character array describing the characteristics
of the keyboard wedge interface.

Example ...

Wedge_1$ = CHR$(1) ' terminal type: PCAT(US)

Wedge_2$ = CHR$(1)

' auto-detection disabled, capital lock off, case-sensitive

' use numeric keypad to transmit digits

Wedge_3$ = CHR$(5) ' inter-char-delay: 5 ms

WedgeSetting$ = Wedge_1$ + Wedge_2$ + Wedge_3$

SET_WEDGE(WedgeSetting$)

WRITE_COM(DataString$)

...

 99

 Chapter 4 BASIC Commands

4.10 SPEAKER COMMANDS

This section describes the commands related to the speaker.

BEEP

Purpose To specify a beep sequence of how a speaker works.

Syntax BEEP(freq%, duration% {, freq%, duration%})

Remarks “freq%” is an integer variable, indicating the value of beep frequency (Hz).

Value Meaning

freq% ≧ 0 Suggested frequency for the buzzer ranges from 1 kHz to
6 kHz. If the value of the frequency is 0, the buzzer will
not sound during the time duration.

freq% = -1 The speaker volume can be configured by setting freq% to
“-1” and duration% to 0~3.

duration% Speaker Volume

0 Set the volume level to “Mute”

1 Set the volume level to “Low”

2 Set the volume level to “Medium”

3 Set the volume level to “High”

freq% = -2 A .wav file on SD card can be specified by setting freq% to
“-2” and duration% to file number. See the example
below.

 “duration%” is an integer variable, indicating the value of beep duration,
which is specified in units of 10 milliseconds.

 Up to eight frequency-duration pairs can be assigned in a beep sequence.

Example ON READER(1) GOSUB BcrDATA_1

 ...

BcrData_1:

 BEEP(-1, 1) ' Set Low

BEEP(2000, 10, 0, 10, 2000, 10)

BEEP(-2, 1) ' Play A:\WAV\1.wav

 ...

 RETURN

100

CipherLab 8600 BASIC Programming Part I

STOP BEEP

Purpose To terminate the beep sequence.

Syntax STOP BEEP

Remarks The STOP BEEP statement terminates the beep immediately if there is a beep
sequence in progress.

Example BEEP(2000, 0)

 ON KEY(1) GOSUB StopBeep

 PRINT “Press F1 to stop the buzzer.”

 ...

StopBeep:

 STOP BEEP

 RETURN

 101

 Chapter 4 BASIC Commands

4.11 LED COMMAND

In general, the dual-color LED indicator or indicators on the mobile computer are used to
indicate the system status, such as good read or bad read, error occurrence, etc.

LED

Purpose To specify the LED lighting behavior.

Syntax LED(number%, mode%, duration%)

Remarks “number%” is a positive integer variable, indicating the LED color.

Value Meaning

1 Red LED light in use.

2 Green LED light in use.

3 Blue LED light in use for the 2nd LED, which is used for wireless
communications by default.

4 Green LED light in use for the 2nd LED, which is used for wireless
communications by default.

“mode%” is an integer variable, indicating the digital output mode. The values
of the mode and their interpretation are listed below.

Value Meaning

0 Turn off the LED for the specific duration and then turn on.

1 Turn on the LED for the specific duration and then turn off.

2 Flash the LED for a specific duration repeatedly. The flashing
period equals 2Xduration.

240 Default setting for the 2nd LED on the mobile computer.

 For LED_BLUE, it is set to indicate Bluetooth status: flashing
quickly for “waiting for connection” or “connecting”; flashing
slowly for “connected”.

 For LED_GREEN2, it is set to indicate Wi-Fi status: flashing
quickly for “waiting for connection” or “connecting”; flashing
slowly for “connected”.

241 Used for the 2nd LED on the mobile computer if user control is
desired. See example below.

LED(3, 240, 0) ' user get control of Blue LED

LED(3, 241, 0) ' return the control to system

“duration%” is an integer variable, specifying a period of time in units of 10
milliseconds.

 A value of 0 in this argument will keep the LED in the specific state
indefinitely.

102

CipherLab 8600 BASIC Programming Part I

Example ON READER(1) GOSUB BcrData_1

 ...

BcrData_1:

 BEEP(2000, 5)

 LED(2, 1, 5)

 Data$ = GET_READER_DATA$(1)

 ...

' GOOD READ LED

 103

 Chapter 4 BASIC Commands

4.12 VIBRATOR COMMANDS

This section describes the command related to the vibrator.

VIBRATOR

Purpose To set the vibrator.

Syntax VIBRATOR(mode%)

Remarks “mode%” is an integer variable, indicating the state of the vibrator.

Value Meaning

0

1

Vibrator off

Vibrator on

Once the vibrator is enabled by VIBRATOR(1), the mobile computer will start
vibrating until the vibrator is set off by VIBRATOR(0).

Example VIBRATOR(1)

...

' turn on the vibrator

104

CipherLab 8600 BASIC Programming Part I

4.13 REAL-TIME CLOCK COMMANDS

This section describes the commands related to the calendar and timer.

The system date and time are maintained by the calendar chip, and they can be retrieved
from or set to the calendar chip by the commands DATE$ and TIME$. A backup
rechargeable Lithium battery keeps the calendar chip running even when the power is
turned off.

 The calendar chip automatically handles the leap year. The year field set to the
calendar chip must be in four-digit format.

Commands for triggering the HOUR_SHARP event, the MINUTE_SHARP event, and the
TIMER event: OFF HOUR_SHARP, OFF MINUTE_SHARP, OFF TIMER, ON
HOUR_SHARP GOSUB..., ON MINUTE_SHARP GOSUB..., and ON TIMER GOSUB...

Up to five timers can be set by the command ON TIMER... GOSUB... for the “TIMER
Event Trigger”.

Note: The system time variable TIMER is maintained by CPU timers and has nothing to
do with this calendar chip. Accuracy of this time variable depends on the CPU clock
and is not suitable for precise time manipulation. Besides, it is reset to 0 upon
powering up (as a cold start).

DATE$

Purpose To set or to get the current date.

Syntax DATE$ = X$

Y$ = DATE$

Remarks DATE$ = X$, to set the current date.

“X$” is a string variable in the form of “yyyymmdd”.

Y$ = DATE$, to get the current date, in the form of “yyyymmdd”.

“Y$” is a string variable to be assigned to the result.

Note that the BASIC Compiler and its Run-time Engines do not check the
format and contents of the string to be assigned to DATE$. User is obliged to
check the format and contents.

Example DATE$ = “20000103”

Today$ = DATE$

PRINT Today$

...

' set the system date to 2000/01/03

' assign the current date to Today$

' Today$ = “20000103”

 105

 Chapter 4 BASIC Commands

DAY_OF_WEEK

Purpose To get the day of the week.

Syntax A% = DAY_OF_WEEK

Remarks “A%” is an integer variable to be assigned to the result.

A value of 1 to 7 represents Monday to Sunday respectively.

Example ON DAY_OF_WEEK GOSUB 100, 200, 300, 400, 500, 600, 700

 ...

100

 PRINT “Today is Monday.”

 RETURN

200

 PRINT “Today is Tuesday.”

 RETURN

300

 PRINT “Today is Wednesday.”

 RETURN

...

TIME$

Purpose To set or to get the current time.

Syntax TIME$ = X$

Y$ = TIME$

Remarks TIME$ = X$, to set the current time.

“X$” is a string variable in the form of “hhmmss”.

Y$ = TIME$, to get the current time, in the form of “hhmmss”.

“Y$” is a string variable to be assigned to the result.

The BASIC Compiler and its Run-time Engines do not check the format and
contents of the string to be assigned to TIME$. User is obliged to check the
format and contents.

Example TIME$ = “112500”

CurrentTime$ = TIME$

PRINT CurrentTime$

...

' set the system time to 11:25:00

' assign the current to CurrentTime$

' CurrentTime$ = “112500”

106

CipherLab 8600 BASIC Programming Part I

TIMER

Purpose To return the number of seconds elapsed since the mobile computer is powered
on.

Syntax A& = TIMER

Remarks “A&” is a long integer variable to be assigned to the result.

Note that the TIMER is a read-only function. The system timer cannot be set by
this command.

Example StartTime& = TIMER

…

Loop:

IF EndTime& <> TIMER THEN

 EndTime& = TIMER

 TimerElapsed& = EndTime& - StartTime&

 CLS

 PRINT TimerElapsed&

 IF TimerElapsed& > 100 THEN GOTO NextStep

END IF

GOTO Loop

NextStep:

…

See Also OFF TIMER, ON TIMER GOSUB…

WAIT

Purpose To put the system on hold for a specified duration. In the interval, the system
will be running in a rather low power consumption mode.

Syntax WAIT(duration%)

Remarks “duration%” is a positive integer variable, indicating the time duration for a
hold. This argument is specified in units of 5 milliseconds.

When the application is waiting for events in a loop, the power consumption
will be dramatically reduced by calling this function.

Example PRINT “CipherLab BASIC”

WAIT(200)

‘ the system is on hold for 1 second

 107

 Chapter 4 BASIC Commands

4.14 BATTERY COMMANDS

This section describes the commands related to power management that can be used to
monitor the voltage level of the main and backup batteries. The mobile computer is
equipped with a main battery for normal operation as well as a backup battery for
keeping SRAM data and time accuracy.

BACKUP_BATTERY

Purpose To get the voltage level of the backup battery.

Syntax A% = BACKUP_BATTERY

Remarks “A%” is an integer variable to be assigned to the result. That is, the voltage
level of the backup battery is returned in units of milli-volt (mV).

The backup battery is used to retain data in SRAM and keep the real-time clock
and calendar running, even when the power is off. The backup battery would
be considered as “Battery Low” when the BACK_BATTERY is lower than 2900
mV. That means the SRAM and the calendar chip may lose their data at any
time thereafter, if the battery is not recharged or replaced.

Example CheckBackupBattery:

IF BACKUP_BATTERY < BATTERY_LOW% THEN

 BEEP(2000, 30)

 CLS

 PRINT “Backup Battery needs to be replaced!”

Loop:

 GOTO Loop

END IF

MAIN_BATTERY

Purpose To get the voltage level of the main battery.

Syntax A% = MAIN_BATTERY

Remarks “A%” is an integer variable to be assigned to the result. That is, the voltage
level of the main battery is returned in units of milli-volt (mV).

The main battery is the power source for the system operation. The main
battery would be considered as “Battery Low” when the MAIN_BATTERY is
lower than 3400 mV. That means the basic operations may still be running, but
some functions that consume high power may be disabled.

Example BATTERY_LOW% = 3400

CheckMainBattery:

IF MAIN_BATTERY < BATTERY_LOW% THEN

BEEP(2000, 30)

 CLS

 PRINT “Main Battery needs to be recharged!”

Loop:

 GOTO Loop

END IF

108

CipherLab 8600 BASIC Programming Part I

4.15 KEYPAD COMMANDS

All the CipherLab mobile computers provide a built-in keypad for data input. This section
describes the commands related to the keypad operation. Commands for triggering the
ESC event and the KEY event include: OFF ESC, OFF KEY, ON ESC GOSUB…, ON KEY
GOSUB…

4.15.1 GENERAL

CLR_KBD

Purpose To clear the keyboard buffer.

Syntax CLR_KBD

Remarks By calling this function, data queuing in the keyboard buffer will be cleared.

Example CLR_KBD

ON KEY(1) GOSUB KeyData_1

…

INKEY$

Purpose To read one character from the keyboard buffer and then remove it.

Syntax X$ = INKEY$

Remarks “X$” is a string variable to be assigned to the character read.

It can be used with menu operation to detect a shortcut key being pressed, or
with touch screen operation to detect a touched item.

Example …

PRINT “Initialize System (Y/N)?”

Loop:

 KeyData$ = INKEY$

 IF KeyData$ = “” THEN

 GOTO Loop

 ELSE IF KeyData$ = “Y” THEN

 GOTO Initialize

 …

 109

 Chapter 4 BASIC Commands

INPUT

Purpose To take user input from the keypad and store it in a variable.

Syntax INPUT variable

Remarks “variable” is a numeric or string variable that will receive the input data. The
data entered must match the data type of the variable.

When the input task is properly ended with the ENTER key being pressed, the
data string will be stored in a variable. Otherwise, press the ESC key to abort
the task, and the string will be cleared.

Example INPUT String$

PRINT String$

INPUT Number%

PRINT Number%

' input a string variable

' input a numeric variable

INPUT_MODE

Purpose To set the display mode of the input data.

Syntax INPUT_MODE(mode%)

Remarks “mode%” is an integer variable, indicating the input mode.

Value Meaning

0

1

2

Nothing will be displayed on the LCD.

The input characters will be displayed on the LCD. (default)

“*” will be displayed instead of the input characters. Usually, it
is applied for password input.

Example LOCATE 1, 1

INPUT_MODE(1)

INPUT Login$

LOCATE 2, 1

INPUT_MODE(2)

INPUT Password$

KEY_CLICK

Purpose To enable/disable the key click sound.

Syntax KEY_CLICK(status%)

Remarks “status%” is an integer variable, indicating the key click status.

 The key click is enabled by default.

Value Meaning

0

1~5

Disable key click (mute mode)

Enable key click (each represents a different tone)

Example KEY_CLICK(0) ‘ disable the key click

110

CipherLab 8600 BASIC Programming Part I

PUTKEY

Purpose To put one character to the keyboard buffer.

Syntax PUTKEY(N%)

Remarks “N%” is an integer variable, indicating the ASCII code of a character.

It provides the capability of simulating the keypad operation.

Example PUTKEY(27) ‘ put [ESC] key value to the buffer

SET_TRIGGER

Purpose To set the TRIGGER key.

Syntax SET_TRIGGER(state%)

Remarks “state%” is an integer variable, indicating the state of the trigger key.

Value Meaning

0

1

Set the trigger key released

Set the trigger key pressed

This function is used as software trigger.

Example SET_TRIGGER(1) ‘ Set the trigger key pressed

See Also GET_TRIGGER

GET_TRIGGER

Purpose To get the state of the TRIGGER key.

Syntax A% = GET_TRIGGER

Remarks “A%” is an integer variable, indicating the state of the trigger key.

Value Meaning

0

1

The trigger key released

The trigger key pressed

Example A%=GET_TRIGGER

See Also SET_TRIGGER

 111

 Chapter 4 BASIC Commands

SET_TRIG2KEY

Purpose To set the TRIGGER key as other key function.

Syntax SET_TRIG2KEY(TRIG%, KEY%)

Remarks “TRIG%” is an integer variable, indicating which trigger is set.

Value Meaning

0

1

2

3

Middle Trigger

Pistol Trigger

Left Trigger

Right Trigger

“KEY%” is an integer variable, indicating the key function to be set.

Example SET_TRIG2KEY(0,13) ‘ Set Middle Trigger as Enter key

OSK_TOGGLE

Purpose To toggle the display of on-screen keypad on an iOS-based device.

Syntax OSK_TOGGLE

Remarks After connection of Bluetooth HID is established, this function is used to toggle
the display of on-screen keypad on an iOS-based device.

Example OSK_TOGGLE

SET_PWR_KEY

Purpose To determine whether the POWER key serves to turn off the mobile computer
or not.

Syntax SET_PWR_KEY(N%)

Remarks “N%” is an integer variable, indicating the power key status.

Value Meaning

0

1

Disable power key

Enable power key

Example SET_PWR_KEY(0) ‘ Disable power key

112

CipherLab 8600 BASIC Programming Part I

4.15.2 ALPHA KEY

By default, the input mode is numeric and can be toggled by pressing the ALPHA key
(sky blue in color). In Alpha mode, it takes turns to show alphabets and number when
pressing the same key; the time interval between each press must not exceed one
second. For example, the “2ABC” key can generate “A”, “B”, “C” or “2” by turns within
one second.

ALPHA_LOCK

Purpose To set the ALPHA state for input mode.

Syntax ALPHA_LOCK(status%)

Remarks “status%” is an integer variable, indicating the alpha-input status.

Value Input Mode ALPHA State

0

1

2

3

Numeric mode

Alpha mode, upper case

Numeric mode

Alpha mode, lower case

Unlocked

Unlocked

Locked

Unlocked

5

6

Alpha mode, upper case

Alpha mode, lower case

Locked

Locked

Example ALPHA_LOCK(1)

…

GET_ALPHA_LOCK

Purpose To get information of the ALPHA state for input mode.

Syntax A% = GET_ALPHA_LOCK

Remarks “A%” is an integer variable to be assigned to the result.

Example Alpha_lock% = GET_ALPHA_LOCK

 113

 Chapter 4 BASIC Commands

4.15.3 FN KEY

The function key (orange in color) serves as a modifier key used to produce a key
combination.

1) To enable this modifier key, press the function key on the keypad, and the status icon
 will be displayed on the screen.

2) Press another key to get the value of the key combination (say, F1), and the status
icon will go off immediately when the function key is set to Auto Resume mode by
FUNCTION_TOGGLE(). That is, this modifier key can work only one time for each
press.

3) To get the value of another key combination, repeat the above steps.

However, on condition that the function key is set to Toggle mode by
FUNCTION_TOGGLE(), this modifier key can work as many times as desired until it is
pressed again to exit the function mode.

FUNCTION_TOGGLE

Purpose To set the state of the FN (function) toggle.

Syntax FUNCTION_TOGGLE(status%)

Remarks “status%” is an integer variable, indicating the state of the function toggle.

Group Value Description

8600 Series

29-key

39-key

0 Auto Resume mode + Multi-Key mode (default)

1 Toggle mode

2 Auto Resume mode + Multi-Key mode + FN as
normal key

3 Toggle mode + FN as normal key

4 Multi-Key mode

6 Multi-Key mode + FN as normal key

  Auto Resume mode — The function mode is toggled on by pressing the
function key; it is toggled off by pressing the second key of the key
combination. A status icon is displayed on the screen to indicate the status.
Also, it allows re-pressing the function key to exit the function mode.

 Toggle mode — The function mode is toggled on by pressing the function
key; it can only be toggled off by pressing the function key again. A status
icon is displayed on the screen to indicate the status.

 Multi-Key mode — For any key combination, it requires pressing two keys
at the same time, or holding down the function key followed by the second
key.

 FN as normal key — The function key is treated as a normal key.

Example FUNCTION_TOGGLE(0) ' set the FN state to Auto Resume and
Multi-Key mode

114

CipherLab 8600 BASIC Programming Part I

4.16 LCD COMMANDS

The liquid crystal display (LCD) on the mobile computer is TFT graphic display. The
display capability may vary due to the size of LCD panel.

A coordinate system is used for the cursor movement routines to determine the cursor
location — (x, y) that indicates the column and row position of cursor. The coordinates
given to the top left point is (0, 0), while those of the bottom right point depends on the
size of LCD and font. For displaying a graphic, the coordinate system is on dot (pixel)
basis.

Series Screen Size Top_Left (x, y) Bottom_Right (x, y)

8600 240 x 320 dots (0, 0) (239, 319)

4.16.1 PROPERTIES

The backlight is turned off by default. A backlight key is designed as a toggle to switch
the backlight between on and off.

BACK_LIGHT_DURATION

Purpose To specify how long the backlight will last once the mobile computer is turned
on.

Syntax BACK_LIGHT_DURATION(Dev%, Mode%, Time%)

Remarks “Dev%” is an integer variable, specifying the destination device to be set.

Value Description

1

2

LCD

Keypad

“Mode%” is an integer variable, indicating the mode of automatic backlight.

Value Description

1

2

Battery Mode

External Power Mode

“Time%” is an integer variable, indicating a period of time in units of 1 second.

Example BACK_LIGHT_DURATION(1,1,20) ' set LCD backlight lasting for 20
seconds, in Battery Mode

 115

 Chapter 4 BASIC Commands

BACKLIT

Purpose To set the LCD backlight.

Syntax BACKLIT(Dev%, state%)

Remarks “Dev%” is an integer variable, specifying the destination device to be set.

Value Description

1

2

LCD

Keypad

“state%” is an integer variable, indicating a specific state (luminosity) of the
LCD backlight.

Value Description

0

1

Backlight off (default)

Backlight on

Example BACKLIT(1,1) ' turn on LCD backlight;

See Also GET_BKLIT_LEVEL, SET_AUTO_BKLIT, SET_BKLIT_LEVEL

SET_AUTO_BKLIT

Purpose To set automatic LCD backlight. LCD backlight is on when any key is pressed.

Syntax SET_AUTO_BKLIT(Dev%, Mode%, Trigger%)

Remarks “Dev%” is an integer variable, indicating the destination device to be set.

Value Meaning

1

2

LCD

Keypad

 “Mode%” is an integer variable, indicating the mode of automatic backlight.

Value Meaning

1

2

Battery Mode

External Power Mode

 “Trigger%” is an integer variable, indicating the way of turning on backlight.

Value Meaning

0

1

Turn on by pressing the backlight key

Turn on by pressing any key

Example SET_AUTO_BKLIT(1,1
,1)

' Set backlight to be turned on by pressing any key
in battery mode

See Also GET_BKLIT_LEVEL, SET_BKLIT_LEVEL, BACKLIT

116

CipherLab 8600 BASIC Programming Part I

SET_BKLIT_LEVEL

Purpose To set the level of LCD backlight.

Syntax SET_ BKLIT_LEVEL(Dev%, Mode%, level%)

Remarks “Dev%” is an integer variable, indicating the destination device to be set.

Value Meaning

1

2

LCD

Keypad

“Mode%” is an integer variable, indicating the mode of backlight.

Value Meaning

1

2

Battery Mode

External Power Mode

“level%” is an integer variable, indicating the level of LCD backlight.

Value Meaning

1

2

3

4

5

Backlight with very low luminosity

Backlight with low luminosity

Backlight with medium luminosity

Backlight with high luminosity

Backlight with very high luminosity

Example SET_BKLIT_LEVEL(1,
1,1)

BACKLIT(1,1)

' Set backlight in battery mode with very low
luminosity

' Backlight on

See Also GET_BKLIT_LEVEL, SET_AUTO_BKLIT, BACKLIT

 117

 Chapter 4 BASIC Commands

GET_BKLIT_LEVEL

Purpose To get the LCD backlight level.

Syntax A% = GET_BKLIT_LEVEL(Dev%, Mode%)

Remarks “Dev%” is an integer variable, indicating the destination device to be set.

Value Meaning

1

2

LCD

Keypad

“Mode%” is an integer variable, indicating the mode of backlight.

Value Meaning

1

2

Battery Mode

External Power Mode

“A%” is an integer value, indicating the LCD backlight level.

Value Meaning

1

2

3

4

5

Backlight with very low luminosity

Backlight with low luminosity

Backlight with medium luminosity

Backlight with high luminosity

Backlight with very high luminosity

Example A%=GET_BKLIT_LEVEL
(1,1)

See Also SET_BKLIT_LEVEL, SET_AUTO_BKLIT, BACKLIT

118

CipherLab 8600 BASIC Programming Part I

SET_VIDEO_MODE

Purpose To set the display mode of the LCD.

Syntax SET_VIDEO_MODE(mode%)

Remarks “mode%” is an integer variable, indicating the display mode.

Value Meaning

0

1

Normal mode in use

Reverse mode in use

Example SET_VIDEO_MODE(1) ' this string will be printed in reverse
mode

 PRINT “CipherLab mobile computers”

 119

 Chapter 4 BASIC Commands

SET_COLOR

Purpose To set the color of the LCD.

Syntax SET_BKLIT_LEVEL(Layer%, Order%, Color%)

Remarks “Layer%” is an integer variable, indicating the display Layer.

Value Meaning

1

2

foreground

background

“Order%” is an integer variable, indicating the display Order.

Value Meaning

1

2

primary

secondary

“Color%” is an integer variable, indicating the color in the range of 1 to 20.

Color % Meaning Color Meaning

1 BLACK 11 OLIVE

2 BLUE 12 TEAL

3 LIME 13 PURPLE

4 RED 14 GRAY

5 YELLOW 15 SILVER

6 CYAN 16 WHITE

7 MAGENTA 17 User define #1

8 MAROON 18 User define #2

9 GREEN 19 User define #3

10 NAVY 20 User define #4

255 None

Example SET_COLOR(1,1,5) ‘ set the LCD foreground, primary color to yellow

See Also GET_COLOR

120

CipherLab 8600 BASIC Programming Part I

GET_COLOR

Purpose To get the color of the LCD.

Syntax Color%=GET_COLOR(Layer%, Order%)

Remarks Layer%” is an integer variable, indicating the display Layer.

Value Meaning

1

2

foreground

background

“Order%” is an integer variable, indicating the display Order.

Value Meaning

1

2

primary

secondary

“Color%” is an integer variable, indicating the color in the range of 1 to 20.

Color % Meaning Color Meaning

1 BLACK 11 OLIVE

2 BLUE 12 TEAL

3 LIME 13 PURPLE

4 RED 14 GRAY

5 YELLOW 15 SILVER

6 CYAN 16 WHITE

7 MAGENTA 17 User define #1

8 MAROON 18 User define #2

9 GREEN 19 User define #3

10 NAVY 20 User define #4

255 None

Example COLOR%= GET_COLOR(1,1) ‘ get the LCD foreground, primary color

See Also SET_COLOR

USER_COLOR

Purpose To set the Color by user-defined.

Syntax USER_COLOR(index%, R%, G%, B%)

Remarks “index%” is an integer variable, indicating the user-defined color in the range
of 1 to 4.

“R%” is an integer variable, indicating the Red Color in the range of 0~255.

“G%” is an integer variable, indicating the Green Color in the range of 0~255.

“B%” is an integer variable, indicating the Blue Color in the range of 0~255.

 121

 Chapter 4 BASIC Commands

Example USER_COLOR(1,255,0,0) ‘ set the user-defined color #1 to red.

4.16.2 CURSOR

CURSOR

Purpose To turn on/off the cursor indication on the LCD.

Syntax CURSOR(status%)

Remarks “status%” is an integer variable, indicating the cursor status.

Value Meaning

0

1

The cursor indication is off.

The cursor indication is on.

Example CURSOR(0)

CURSOR_X

Purpose To get the x coordinate of the current cursor position.

Syntax X% = CURSOR_X

Remarks “X%” is an integer variable to be assigned to the column position of the cursor.

Example ON READER(1) GOSUB BcrData_1

 ...

BcrData_1:

 BEEP(2000, 5)

 Data$ = GET_READER_DATA$(1)

 Pre_X% = CURSOR_X

 Pre_Y% = CURSOR_Y

 Locate 8, 1

 PRINT Data$

 Locate Pre_Y%, Pre_X%

 RETURN

122

CipherLab 8600 BASIC Programming Part I

CURSOR_Y

Purpose To get the y coordinate of the current cursor position.

Syntax “Y%” = CURSOR_Y

Remarks “Y%” is an integer variable to be assigned to the row position of the cursor.

Example ON READER(1) GOSUB BcrData_1

...

BcrData_1:

 BEEP(2000, 5)

 Data$ = GET_READER_DATA$(1)

 Pre_X% = CURSOR_X

Pre_Y% = CURSOR_Y

 Locate 8, 1

 PRINT Data$

 Locate Pre_Y%, Pre_X%

RETURN

LOCATE

Purpose To move the cursor to a specified location on the LCD.

Syntax LOCATE row%, col%

Remarks “row%” is an integer variable, indicating the new row position of the cursor.

“col%” is an integer variable, indicating the new column position of the cursor.

Depending on the following elements, the maximum values for row and column
are limited –

 The size of LCD.

 The font file in use.

Example LOCATE 1, 1 ' move the cursor to the top left of the
LCD

 123

 Chapter 4 BASIC Commands

4.16.3 DISPLAY

FILL_RECT

Purpose To fill a rectangular area on the LCD.

Syntax FILL_RECT(x%, y%, size_x%, size_y%)

Remarks “x%”, “y%” are integer variables, indicating the x, y coordinates of the upper
left point of the rectangular area.

“size_x%” is an integer variable, indicating the width of the rectangle in pixels.

“size_y%” is an integer variable, indicating the height of the rectangle in pixels.

Example FILL_RECT(1, 1, 20, 20)

See Also CLR_RECT

PRINT

Purpose To display data on the LCD.

Syntax PRINT expression[{,|;[expression]}]

Remarks “expression” may be numeric or string expression.

The position of each printed item is determined by the punctuation used to
separate items in the list.

 In the list of expression, a comma causes the next character to be printed
after the last character with a blank space, and a semicolon causes the
next character to be printed immediately after the last character.

 If the list of expressions terminates without a comma or semicolon, a
carriage return is printed at the end of the line.

Example LOCATE 1, 1

PRINT String$(20, “”)

LOCATE 1, 1

A = 5

PRINT A, “square is ”; A*A

‘ clear the whole line

See Also CLS

124

CipherLab 8600 BASIC Programming Part I

WAIT_HOURGLASS

Purpose To show a moving hourglass on the LCD.

Syntax WAIT_HOURGLASS(x%, y%, type%)

Remarks “x%”, “y%” are integer variables, indicating the x, y coordinates of the upper
left point of a hourglass.

“type%” is an integer variable, indicating the size of a hourglass.

TYPE% Meaning

1

2

24 x 23 pixels

8 x 8 pixels

Call this function constantly to maintain its functionality. Five different patterns
of an hourglass take turns to show on the LCD indicating the passage of time.
The time factor is decided through programming but no less than two seconds.

Example WAIT_HOURGLASS(68, 68, 1) ‘ show a 24 x 23 pixels hourglass at (68,
68)

4.16.4 CLEAR

CLR_RECT

Purpose To clear a rectangular area on the LCD.

Syntax CLR_RECT(x%, y%, size_x%, size_y%)

Remarks “x%”, “y%” are integer variables, indicating the x, y coordinates of the upper
left point of the rectangular area.

“size_x%” is an integer variable, indicating the width of the rectangle in pixels.

“size_y%” is an integer variable, indicating the height of the rectangle in pixels.

Example CLR_RECT(1, 1, 20, 20)

See Also CLS, FILL_RECT

 125

 Chapter 4 BASIC Commands

CLS

Purpose To clear everything on the LCD.

Syntax CLS

Remarks After running this command, whatever is being shown on the LCD will be
erased and the cursor will be move to (1,1).

Example ON TIMER(1, 200) GOSUB ClearScreen ' TIMER(1) = 2 second

 ...

ClearScreen:

 OFF TIMER(1)

 CLS

 RETURN

See Also CLR_RECT, PRINT

126

CipherLab 8600 BASIC Programming Part I

4.16.5 IMAGE

The command SHOW_IMAGE can be used to display images on the LCD. User needs to
allocate a string variable to store the bitmap data of the image. This string begins with
the top row of pixels.

Each row begins with the left-most pixels. Each bit of the bitmap represents a single pixel
of the image. If the bit is set to 1, the pixel is marked, and if it is 0, the pixel is
unmarked. The 1st pixel in each row is represented by the least significant bit of the 1st
byte in each row. If the image is wider than 8 pixels, the 9th pixel in each row is
represented by the least significant bit of the 2nd byte in each row.

The following is an example to show our company logo, and the string variable “icon$” is
used for storing its bitmap data.

icon_1$ = chr$(0)+chr$(0)+chr$(0)+chr$(0)+chr$(248)+chr$(255)+chr$(7)

icon_2$ = chr$(0)+chr$(0)+chr$(0)+chr$(0)+chr$(8)+chr$(0)+chr$(4)

icon_3$ = chr$(0)+chr$(0)+chr$(0)+chr$(0)+chr$(254)+chr$(255)+chr$(5)

icon_4$ = chr$(0)+chr$(0)+chr$(0)+chr$(0)+chr$(254)+chr$(255)+chr$(5)

icon_5$ = chr$(0)+chr$(0)+chr$(0)+chr$(0)+chr$(254)+chr$(255)+chr$(5)

icon_6$ = chr$(192)+chr$(3)+chr$(0)+chr$(0)+chr$(250)+chr$(255)+chr$(5)

icon_7$ = chr$(96)+chr$(214)+chr$(201)+chr$(59)+chr$(250)+chr$(142)+chr$(5)

icon_8$ = chr$(48)+chr$(80)+chr$(74)+chr$(72)+chr$(122)+chr$(109)+chr$(5)

icon_9$ = chr$(16)+chr$(80)+chr$(74)+chr$(72)+chr$(122)+chr$(109)+chr$(5)

icon_10$ = chr$(16)+chr$(208)+chr$(249)+chr$(59)+chr$(186)+chr$(139)+chr$(5)

icon_11$ = chr$(48)+chr$(84)+chr$(72)+chr$(24)+chr$(58)+chr$(104)+chr$(5)

icon_12$ = chr$(96)+chr$(86)+chr$(72)+chr$(40)+chr$(186)+chr$(107)+chr$(5)

icon_13$ = chr$(192)+chr$(83)+chr$(200)+chr$(75)+chr$(130)+chr$(139)+chr$(5)

 127

 Chapter 4 BASIC Commands

icon_14$ = chr$(0)+chr$(0)+chr$(0)+chr$(0)+chr$(254)+chr$(255)+chr$(7)

icon_15$ = chr$(0)+chr$(0)+chr$(0)+chr$(0)+chr$(254)+chr$(255)+chr$(1)

icon_16$ = chr$(0)+chr$(0)+chr$(0)+chr$(0)+chr$(254)+chr$(255)+chr$(1)

show_image(2, 0, 56, 1, icon_1$)

show_image(2, 1, 56, 1, icon_2$)

show_image(2, 2, 56, 1, icon_3$)

show_image(2, 3, 56, 1, icon_4$)

show_image(2, 4, 56, 1, icon_5$)

show_image(2, 5, 56, 1, icon_6$)

show_image(2, 6, 56, 1, icon_7$)

show_image(2, 7, 56, 1, icon_8$)

show_image(2, 8, 56, 1, icon_9$)

show_image(2, 9, 56, 1, icon_10$)

show_image(2, 10, 56, 1, icon_11$)

show_image(2, 11, 56, 1, icon_12$)

show_image(2, 12, 56, 1, icon_13$)

show_image(2, 13, 56, 1, icon_14$)

show_image(2, 14, 56, 1, icon_15$)

show_image(2, 15, 56, 1, icon_16$)

...

128

CipherLab 8600 BASIC Programming Part I

GET_IMAGE

Purpose To read a bitmap pattern or capture signature from a rectangular area on the
LCD.

Syntax DataCount% = GET_IMAGE(file_index%, x%, y%, size_x%, size_y%)

Remarks “DataCount%” is an integer variable to be assigned to the result; it is the total
data count stored in the specified transaction file.

“file_index%” is an integer variable in the range of 1 to 6, indicating which
transaction file is to store the bitmap data.

“x%”, “y%” are integer variables, indicating the x, y coordinates of the upper
left point of the rectangular area.

 “size_x%” is an integer variable, indicating the width of the rectangle in pixels.

“size_y%” is an integer variable, indicating the height of the rectangle in pixels.

Example GET_IMAGE(3, 12, 32, 60, 16)

See Also GET_TRANSACTION_DATA$, GET_TRANSACTION_DATA_EX$

SHOW_IMAGE

Purpose To put a bitmap pattern to a rectangular area on the LCD.

Syntax SHOW_IMAGE(x%, y%, size_x%, size_y%, image$)

Remarks “x%”, “y%” are integer variables, indicating the x, y coordinates of the upper
left point of the rectangular area.

“size_x%” is an integer variable, indicating the width of the rectangle in pixels.

“size_y%” is an integer variable, indicating the height of the rectangle in pixels.

“image$” is a string variable, containing the bitmap data of the image.

Example icon$ = chr$(0)+chr$(0)+chr$(0)+chr$(0)+chr$(254)+chr$(255)+chr$(1)

show_image(2, 0, 56, 1, icon$)

SHOW_BMP

Purpose To put a bitmap pattern to a rectangular area on the LCD.

Syntax SHOW_BMP(Layer%, x%, y%, BMPFile$)

Remarks “layer%” is an integer variable, indicating the destination layer where the
bitmap pattern is put.

TYPE% Meaning

1

2

foreground

background

“x%”, “y%” are integer variables, indicating the x, y coordinates of the upper
left point of the rectangular area.

“BMPFile $” is a string variable, specifying the bitmap file of the image.

Example SHOW_BMP(1, 0, 0, “A:\\sample.bmp”)

 129

 Chapter 4 BASIC Commands

4.16.6 GRAPHICS

A monochrome graphic has three factors as listed in the table.

Key Factors Parameters Functions

Video Mode VIDEO_REVERSE

VIDEO_NORMAL

1

0

See SetVideoMode()

Pixel State DOT_MARK

DOT_CLEAR

DOT_REVERSE

1

0

-1

See circle(), line(), putpixel() and rectangle()

Shape State SHAPE_FILL

SHAPE_NORMAL

1

0

See circle(), rectangle()

Illustrative examples are given below.

Shape State Pixel State

 DOT_MARK DOT_CLEAR DOT_REVERSE

SHAPE_FILL

SHAPE_NORMAL

130

CipherLab 8600 BASIC Programming Part I

CIRCLE

Purpose To draw a circle on the LCD.

Syntax CIRCLE(cx%, cy%, r%, type%, mode%)

Remarks “cx%”, “cy%” are integer variables, indicating the x, y coordinates of the
center of a circle.

“r%” is an integer variable, indicating the radius of a circle in pixels.

“type%” is an integer variable, indicating the type of a circle.

TYPE% Meaning

0 SHAPE_NORMAL Hollow object

1 SHAPE_FILLL Solid object

“mode%” is an integer variable, indicating the state of a pixel.

MODE% Meaning

-1 DOT_REVERSE Dot in Reverse mode

0 DOT_CLEAR Dot being cleared

1 DOT_MARK Dot being marked

Example CIRCLE(80, 120, 8, 1, 1) ' draw a solid circle centered at
(8,120) with radius of 8 pixels

See Also CLS, LINE, PUT_PIXEL, RECTANGLE

LINE

Purpose To draw a line on the LCD.

Syntax LINE(x1%, y1%, x2%, y2%, mode%)

Remarks “x1%”, “y1%” are integer variables, indicating the x, y coordinates of where a
line starts.

“x2%”, “y2%” are integer variables, indicating the x, y coordinates of where a
line ends.

“mode%” is an integer variable, indicating the state of a pixel.

MODE% Meaning

-1 DOT_REVERSE Dot in Reverse mode

0 DOT_CLEAR Dot being cleared

1 DOT_MARK Dot being marked

Example LINE(10, 10, 120, 10, 1)

LINE(80, 120, 10, 10, 1)

' draw a horizontal line

' draw an oblique line

See Also CIRCLE, CLS, PUT_PIXEL, RECTANGLE

 131

 Chapter 4 BASIC Commands

PUT_PIXEL

Purpose To mark a pixel (or a dot) on the LCD.

Syntax PUT_PIXEL(x%, y%, mode%)

Remarks “x%”, “y%” are integer variables, indicating the x, y coordinates of a pixel.

“mode%” is an integer variable, indicating the state of a pixel.

MODE% Meaning

-1 DOT_REVERSE Dot in Reverse mode

0 DOT_CLEAR Dot being cleared

1 DOT_MARK Dot being marked

Example PUT_PIXEL(80, 120, 1) ' mark a pixel at (80, 120)

See Also CIRCLE, CLS, LINE, RECTANGLE

RECTANGLE

Purpose To draw a rectangle on the LCD.

Syntax RECTANGLE(x1%, y1%, x2%, y2%, type%, mode%)

Remarks “x1%”, “y1%” are integer variables, indicating the x, y coordinates of where a
diagonal starts.

“x2%”, “y2%” are integer variables, indicating the x, y coordinates of where a
diagonal ends.

“type%” is an integer variable, indicating the type of a circle.

TYPE% Meaning

0 SHAPE_NORMAL Hollow object

1 SHAPE_FILLL Solid object

“mode%” is an integer variable, indicating the state of a pixel.

MODE% Meaning

-1 DOT_REVERSE Dot in Reverse mode

0 DOT_CLEAR Dot being cleared

1 DOT_MARK Dot being marked

Example RECTANGLE(10, 20, 80, 100, 1, 1)

RECTANGLE(10, 100, 80, 20, 1, 1)

' draw a rectangle

' same rectangle as above

See Also CIRCLE, CLS, LINE, PUT_PIXEL

132

CipherLab 8600 BASIC Programming Part I

4.17 FONTS

4.17.1 FONT SIZE

Basically, the mobile computer allows two font size options for the system font: 10x20
and 12x24. These options are also applicable to other alphanumerical font files (for single
byte languages), such as the multi-language font file and Hebrew/Nordic/Polish/Russian
font files.

 The LCD will show 10x20 alphanumeric characters by default.

In addition to the system font, the mobile computer supports a number of font files as
shown below. Available font size options depend on which font file is downloaded to the
mobile computer.

Font Files SetFont Options

Single-byte System font (default) FONT_SYS_10X20, FONT_SYS_12X24

Multi-language font file FONT_EU_08X16, FONT_EU_10X20

FONT_EU_12X24, FONT_EU_14X28

Double-byte Tc FONT_TC_08X16, FONT_TC_10X20

FONT_TC_12X24, FONT_TC_14X28

Sc FONT_SC_08X16, FONT_SC_10X20

FONT_SC_12X24, FONT_SC_14X28

Jp FONT_JP_08X16, FONT_JP_10X20

FONT_JP_12X24, FONT_JP_14X28

Kr FONT_KR_08X16, FONT_KR_10X20

FONT_KR_12X24, FONT_KR_14X28

4.17.2 DISPLAY CAPABILITY

Varying by the screen size and the font size of alphanumeric characters, the display
capability can be viewed by lines and characters (per line) as follows.

Screen Size (dots) Alphanumerical Font Display Capability Icon Zone

8600 240 x 320 Font Size 08x16 dots 30 (char) * 18 (lines) Top row (240x20)

Font Size 10x20 dots 24 (char) * 15 (lines) Top row (240x20)

Font Size 12x24 dots 20 (char) * 12 (lines) Top row (240x20)

Font Size 14x28 dots 17 (char) * 10 (lines) Top row (240x20)

 133

 Chapter 4 BASIC Commands

4.17.3 MULTI-LANGUAGE FONT FILE

The multi-language font file includes English (default), French, Hebrew, Latin, Nordic,
Portuguese, Turkish, Russian, Polish, Slavic, Slovak, etc. To display in any of these
languages except English, you need to call SET_LANGUAGE to specify the language by
region.

4.17.4 SPECIAL FONT FILES

Fonts with file name specifying Tc (Traditional Chinese), Sc (Simplified Chinese), Jp
(Japanese), or Kr (Korean) are referred to as the special font files because their font size
for alphanumeric characters must be determined by the SELECT_FONT command, either
10x20 or 20x20. Otherwise, the characters cannot be displayed properly.

GET_LANGUAGE

Purpose To retrieve the font/language setting.

Syntax A% = GET_LANGUAGE

Remarks “A%” is an integer variable to be assigned to the result. When the retrieved
font is a multi-language font, the returned value is listed in the table below.

A% Meaning Code Page

16

17

18

19

20

21

22

23

24

25

30

31

32

33

English

Canadian French

Hebrew

Multilingual Latin I

Nordic

Portuguese

Cyrillic (Russian)

Latin II (Slavic)

Central European, Latin II (Polish)

Turkish

Greek

Latin I

Greek

Latin V (Turkish)

MS-DOS Code page 437

MS-DOS Code page 863

MS-DOS Code page 862

MS-DOS Code page 850

MS-DOS Code page 865

MS-DOS Code page 860

Windows Code page 1251

MS-DOS Code page 852

Windows Code page 1250

MS-DOS Code page 857

MS-DOS Code page 737

Windows Code page 1252

Windows Code page 1253

Windows Code page 1254

134

CipherLab 8600 BASIC Programming Part I

 The returned value below is returned when the retrieved font is not a
multi-language one or the specified multi-language doesn’t exist.

A% Meaning Code Page

0

1

10

11

12

15

20

21

22

25

30

31

32

35

40

41

42

45

50

51

52

55

FONT_SYS_10X20

FONT_SYS_12X24

FONT_TC_10X20

FONT_TC_12X24

FONT_TC_14X28

FONT_TC_08X16

FONT_SC_10X20

FONT_SC_12X24

FONT_SC_14X28

FONT_SC_08X16

FONT_JP_10X20

FONT_JP_12X24

FONT_JP_14X28

FONT_JP_08X16

FONT_KR_10X20

FONT_KR_12X24

FONT_KR_14X28

FONT_KR_08X16

FONT_EU_10X20

FONT_EU_12X24

FONT_EU_14X28

FONT_EU_08X16

(System font)

(System font)

(for font files Tc20)

(for font files Tc24)

(for font files Tc28)

(for font files Tc16)

(for font files Sc20)

(for font files Sc24)

(for font files Sc28)

(for font files Sc16)

(for font files Jp20)

(for font files Jp24)

(for font files Jp28)

(for font files Jp16)

(for font files Kr20)

(for font files Kr24)

(for font files Kr28)

(for font files Kr16)

(for multi-language font)

(for multi-language font)

(for multi-language font)

(for multi-language font)

Example language% = GET_LANGUAGE

 135

 Chapter 4 BASIC Commands

SET_LANGUAGE

Purpose To select which language is to be used for the multi-language font file.

Syntax SET_LANGUAGE(N%)

Remarks “N%” is an integer variable in the range of 16 to 32.

N% Meaning Code Page

16

17

18

19

20

21

22

23

24

25

30

31

32

33

English

Canadian French

Hebrew

Multilingual Latin I

Nordic

Portuguese

Cyrillic (Russian)

Latin II (Slavic)

Central European, Latin II (Polish)

Turkish

Greek

Latin I

Greek

Latin V (Turkish)

MS-DOS Code page 437

MS-DOS Code page 863

MS-DOS Code page 862

MS-DOS Code page 850

MS-DOS Code page 865

MS-DOS Code page 860

Windows Code page 1251

MS-DOS Code page 852

Windows Code page 1250

MS-DOS Code page 857

MS-DOS Code page 737

Windows Code page 1252

Windows Code page 1253

Windows Code page 1254

Note that this command will fail if the multi-language font file does not exist.

Example SET_LANGUAGE(17) ' select French

136

CipherLab 8600 BASIC Programming Part I

SELECT_FONT

Purpose To select a font size for the LCD to display alphanumeric characters properly.

Syntax SELECT_FONT(font%)

Remarks “font%” is an integer variable, indicating the font size.

font% Meaning

0

1

10

11

12

15

20

21

22

25

30

31

32

35

40

41

42

45

50

51

52

55

FONT_SYS_10X20

FONT_SYS_12X24

FONT_TC_10X20

FONT_TC_12X24

FONT_TC_14X28

FONT_TC_08X16

FONT_SC_10X20

FONT_SC_12X24

FONT_SC_14X28

FONT_SC_08X16

FONT_JP_10X20

FONT_JP_12X24

FONT_JP_14X28

FONT_JP_08X16

FONT_KR_10X20

FONT_KR_12X24

FONT_KR_14X28

FONT_KR_08X16

FONT_EU_10X20

FONT_EU_12X24

FONT_EU_14X28

FONT_EU_08X16

(System font)

(System font)

(for font files Tc20)

(for font files Tc24)

(for font files Tc28)

(for font files Tc16)

(for font files Sc20)

(for font files Sc24)

(for font files Sc28)

(for font files Sc16)

(for font files Jp20)

(for font files Jp24)

(for font files Jp28)

(for font files Jp16)

(for font files Kr20)

(for font files Kr24)

(for font files Kr28)

(for font files Kr16)

(for multi-language font)

(for multi-language font)

(for multi-language font)

(for multi-language font)

 Single-byte Characters:

For single-byte characters (system, multi-language, etc.), simply assign either
FONT_xx_10X20 or FONT_xx_12X24.

 24X24 Double-byte Characters:

If you assign FONT_xx_12X24, the font size for single byte characters will be
12x24, while it will still take 24x24 for double-byte characters (Tc, Sc, Jp, Kr).
It thus provides flexibility in displaying alphanumeric.

 20x20 Double-byte Characters:

If you assign FONT_xx_10X20, the font size for single byte characters will be
10x20, while it will still take 20x20 for double-byte characters (Tc, Sc, Jp, Kr).
It thus provides flexibility in displaying alphanumeric.

 137

 Chapter 4 BASIC Commands

Example SELECT_FONT(0)

SELECT_FONT(1)

SELECT_FONT(30)

SELECT_FONT(50)

' set font size 10x20 for system font

' set font size 12x24 for system font

' set font size 10x20 for Jp20

' set font size 10x20 for multi-language

138

CipherLab 8600 BASIC Programming Part I

4.18 MEMORY COMMANDS

This section describes the commands related to the flash memory and SRAM, where
Program Manager and File System reside respectively.

Memory Size Flash Memory SRAM SD Card

8600 Series 16 MB 8 MB, 16 MB Supported

MEMORY_INFORMATION

Purpose To get information on memory allocation.

Syntax R% = MEMORY_INFORMATION(N%)

Remarks “R%” is an integer variable to be assigned to the result.

 If the value of N% is illegal, it returns -1.

 If the memory type does not exist, it returns 0.

“N%” is an integer variable in the range of 1 to 6, indicating the memory type.

N% Meaning

1

2

3

4

5

6

Base RAM, in kilobytes

Optional RAM, in kilobytes

Free memory (SRAM), in kilobytes

Flash memory, in kilobytes

SD card size, in megabytes

Free memory on SD card, in megabytes

Example PRINT “Free memory = ”, MEMORY_INFORMATION(3)

See Also FREE_MEMORY, RAM_SIZE, ROM_SIZE, SD_SIZE, SD_FREE_MEMORY

 139

 Chapter 4 BASIC Commands

4.18.1 FLASH

The flash memory, known as program memory, where programs reside is divided into
256 memory banks, each 64 KB. The program memory is allocated to three areas,
System (Bootloader & kernel), User (user ROM & user program), and Font.

 Bootloader location in flash: 0x14000000~0x1400FFFF
 Kernel location in flash: 0x14010000~0x143FFFFF
 User ROM location in flash: 0x14400000~1443FFFF
 User program location in flash: 0x14440000~147FFFFF
 Font location in flash: 0x14800000~14FFFFFF

FLASH_READ$

Purpose To read a data string from the memory bank 0x14400000 ~ 0x1443FFFF.

Syntax A$ = FLASH_READ$(N%)

Remarks “A$” is a string variable to be assigned to the result.

“N%” is an integer variable in the range of 1 to 1024, indicating the ordinal
number of the record.

Example A$ = FLASH_READ$(3) ‘ read the 3rd record

140

CipherLab 8600 BASIC Programming Part I

FLASH_WRITE

Purpose To write a data string to the memory bank 0x14400000 ~ 0x1443FFFF.

Syntax A% = FLASH_WRITE(N%, A$)

Remarks “A%” is an integer variable to be assigned to the result.

A% Meaning

1

-1

-2

-3

-4

Write flash memory successfully.

The BASIC program is too large; no free flash memory available.

Error command for erasing the flash memory.

The given index is out of the range.

Fail to write (probably flash memory is not erased yet or something
goes wrong).

“N%” is an integer variable in the range of 1 to 1024, indicating the ordinal
number of the record.

“A$” is a string variable, representing the data string to be saved.

 Before writing data to any used record, it is necessary to use the following
command to erase the memory bank first:

err% = FLASH_WRITE(0, “ERASE”)

Note that the record number must be 0, and the string must be “ERASE”.

After erasing the whole memory bank, you can then write data to it by one
record at a time. Be aware that whenever you need to write data to any used
record, the whole memory bank needs to be erased; otherwise, this command
will fail.

Example err% = FLASH_WRITE(1, “data number#1”)

…

err% = FLASH_WRITE(256, “data number#256”)

ROM_SIZE

Purpose To get the size of the whole flash memory in kilobytes.

Syntax A% = ROM_SIZE

Remarks “A%” is an integer variable to be assigned to the result.

Example PRINT “Flash size = ”, ROM_SIZE

See Also MEMORY_INFORMATION(4)

 141

 Chapter 4 BASIC Commands

4.18.2 SRAM

The File System keeps user data in SRAM, which is maintained by the backup battery.
However, data loss may occur during low battery condition or when the battery is drained.
It is necessary to upload data to a host computer before putting away the mobile
computer.

FREE_MEMORY

Purpose To get the size of free data memory (SRAM) in bytes.

Syntax A& = FREE_MEMORY

Remarks “A&” is a long integer variable to be assigned to the result.

Example PRINT “Free memory = ”, FREE_MEMORY

See Also MEMORY_INFORMATION(3)

RAM_SIZE

Purpose To get the size of the whole data memory (SRAM) in kilobytes.

Syntax A% = RAM_SIZE

Remarks “A%” is an integer variable to be assigned to the result.

Example PRINT “SRAM size = ”, RAM_SIZE

See Also MEMORY_INFORMATION(1)

142

CipherLab 8600 BASIC Programming Part I

4.18.3 SD CARD

SD_FREE_MEMORY

Purpose To get the size of free data memory on SD card in megabytes.

Syntax A% = SD_FREE_MEMORY

Remarks “A%” is an integer variable to be assigned to the result.

Example PRINT “Free memory on SD = ”, SD_FREE_MEMORY

See Also MEMORY_INFORMATION(6)

SD_SIZE

Purpose To get the volume of SD card, excluding the space used by FAT structure.

Syntax A% = SD_SIZE

Remarks “A%” is an integer variable to be assigned to the result, in units of megabytes.

Example PRINT “SD size = ”, SD_SIZE

See Also MEMORY_INFORMATION(5)

 143

 Chapter 4 BASIC Commands

4.19 FILE MANIPULATION

There are many file manipulation commands available for programming the mobile
computers. These commands help manipulate the transaction data and ease the
implementation of database system.

Two types of file structures are supported -

 Sequential structure called DAT file that is usually used to store transaction data.
 Index structure is usually used to store lookup data. Actually, there are two types of

index file. One is DBF for storing the original data records (data members), and the
other is IDX for sorting the records according to the associate key.

Below are the commands applicable to both types of files, DAT and DBF files (with
associated IDX files).

4.19.1 DAT FILES

This one has a sequential file structure, which is much like the ordinary sequential file but
is modified to support FIFO structure. We call this type of file as DAT file. Because DAT
files are usually used to store transaction data, they are also referred to as Transaction
files.

Note: (1) The length of each record in the transaction file is limited to 255 bytes.
 (2) For mobile computers, a BASIC program can have up to 6 transaction files.

144

CipherLab 8600 BASIC Programming Part I

DEL_TRANSACTION_DATA

Purpose To remove a block of transaction data from the first (= default) transaction file.

Syntax DEL_TRANSACTION_DATA(N%)

Remarks “N%” is an integer variable, determining how many transaction records to be
deleted and how to delete.

 If “N%” is a positive integer, the specified number of records will be
deleted from the top of the transaction file 1. That is, the oldest records will
be deleted.

 If “N%” is a negative integer, the specified number of records will be
deleted from the bottom of the transaction file 1. That is, the latest records
will be deleted.

Example …

 PRINT “Discard the latest transaction? (Y/N)”

 …

Loop:

 KeyData$ = INKEY$

 IF KeyData$ = “” THEN

 GOTO Loop

 ELSE IF KeyData$ = “Y” THEN

 DEL_TRANSACTION_DATA(-1)

 END IF

 …

See Also DEL_TRANSACTION_DATA_EX, EMPTY_TRANSACTION

 145

 Chapter 4 BASIC Commands

DEL_TRANSACTION_DATA_EX

Purpose To remove a block of transaction data from a specified transaction file.

Syntax DEL_TRANSACTION_DATA_EX(file%, N%)

Remarks “file%” is an integer variable in the range of 1 to 6, indicating which transaction
file the command is to affect. These commands work the same –

 DEL_TRANSACTION_DATA_EX(1, N%)

 DEL_TRANSACTION_DATA(N%)

“N%” is an integer variable, determining how many transaction records to be
deleted and how to delete.

 If “N%” is a positive integer, the specified number of records will be
deleted from the top of the transaction file 1. That is, the oldest records will
be deleted.

 If “N%” is a negative integer, the specified number of records will be
deleted from the bottom of the transaction file 1. That is, the latest records
will be deleted.

Example …

 PRINT “Discard the latest transaction? (Y/N)”

 …

Loop:

 KeyData$ = INKEY$

 IF KeyData$ = “” THEN

 GOTO Loop

 ELSE IF KeyData$ = “Y” THEN

 DEL_TRANSACTION_DATA_EX(TransFile%, -1)

 END IF

 …

See Also DEL_TRANSACTION_DATA, EMPTY_TRANSACTION_EX

146

CipherLab 8600 BASIC Programming Part I

EMPTY_TRANSACTION

Purpose To remove all the transaction data from the first (= default) transaction file.

Syntax EMPTY_TRANSACTION

Remarks Note that if this function is called at the beginning of the program, data will be
deleted after the battery is replaced or System Menu is launched.

Example …

PRINT “Remove all the transaction data? (Y/N)”

…

Loop:

KeyData$ = INKEY$

IF KeyData$ = “” THEN

 GOTO Loop

ELSE IF KeyData$ = “Y” THEN

 EMPTY_TRANSACTION

END IF

…

See Also DEL_TRANSACTION_DATA, EMPTY_TRANSACTION_EX

EMPTY_TRANSACTION_EX

Purpose To remove all the transaction data from a specified transaction file.

Syntax EMPTY_TRANSACTION_EX(file%)

Remarks “file%” is an integer variable in the range of 1 to 6, indicating which transaction
file the command is to affect. These commands work the same –

 EMPTY_TRANSACTION_EX(1)

 EMPTY_TRANSACTION

Note that if this function is called at the beginning of the program, data will be
deleted after the battery is replaced or System Menu is launched.

Example EMPTY_TRANSACTION_EX(6)

See Also DEL_TRANSACTION_DATA_EX, EMPTY_TRANSACTION

 147

 Chapter 4 BASIC Commands

GET_TRANSACTION_DATA$

Purpose To read a transaction record from the first (= default) transaction file.

Syntax A$ = GET_TRANSACTION_DATA$(N%)

Remarks “A$” is a string variable to be assigned to the transaction data.

“N%” is an integer variable, indicating the ordinal number of the record to be
read from the first transaction file.

Example …

WHILE (TRANSACTION_COUNT > 0)

 TransactionData$ = GET_TRANSACTION_DATA$(1)

 WRITE_COM(1, TransactionData$)

 DEL_TRANSACTION_DATA(1)

WEND

See Also GET_TRANSACTION_DATA_EX$, SAVE_TRANSACTION, UPDATE_TRANSACTION

GET_TRANSACTION_DATA_EX$

Purpose To read a transaction record from a specified transaction file.

Syntax A$ = GET_TRANSACTION_DATA_EX$(file%, N%)

Remarks “A$” is a string variable to be assigned to the transaction data.

“file%” is an integer variable in the range of 1 to 6, indicating which transaction
file to access. These commands work the same –

 GET_TRANSACTION_DATA_EX$(1,1)

 GET_TRANSACTION_DATA$(1)

“N%” is an integer variable, indicating the ordinal number of the record to be
read from the first transaction file.

Example …

WHILE (TRANSACTION_COUNT > 0)

 TransactionData$ = GET_TRANSACTION_DATA_EX$(TransFile%, 1)

 WRITE_COM(1, TransactionData$)

 DEL_TRANSACTION_DATA_EX(TransFile%, 1)

WEND

See Also GET_TRANSACTION_DATA$, SAVE_TRANSACTION_EX,
UPDATE_TRANSACTION_EX

148

CipherLab 8600 BASIC Programming Part I

SAVE_TRANSACTION

Purpose To save (append) a transaction record to the first (= default) transaction file.

Syntax SAVE_TRANSACTION(data$)

Remarks “data$” is a string variable, representing the string to be saved in the first
(default) transaction file.

Example ON READER(1) GOSUB BcrData_1

 …

BcrData_1:

 Data$ = GET_READER_DATA$(1)

 PRINT Data$

 SAVE_TRANSACTION(Data$)

 IF GET_FILE_ERROR <> 0 THEN PRINT “Transaction not saved.”

 RETURN

See Also GET_TRANSACTION_DATA$, SAVE_TRANSACTION_EX, UPDATE_TRANSACTION

SAVE_TRANSACTION_EX

Purpose To save (append) a transaction record to a specified transaction file.

Syntax SAVE_TRANSACTION_EX(file%, data$)

Remarks “file%” is an integer variable in the range of 1 to 6, indicating which transaction
file to access. These commands work the same –

 SAVE_TRANSACTION_EX(1,data$)

 SAVE_TRANSACTION(data$)

“data$” is a string variable, representing the string to be saved in the specified
transaction file.

Example ON READER(1) GOSUB BcrData_1

 …

BcrData_1:

 BEEP(2000, 5)

 Data$ = GET_READER_DATA$(1)

 PRINT Data$

 SAVE_TRANSACTION_EX(TransFile%, Data$)

 IF GET_FILE_ERROR <> 0 THEN PRINT “Transaction not saved.”

 RETURN

See Also GET_TRANSACTION_DATA_EX$, SAVE_TRANSACTION,
UPDATE_TRANSACTION_EX

 149

 Chapter 4 BASIC Commands

TRANSACTION_COUNT

Purpose To get the total number of transaction records saved in the first (= default)
transaction file.

Syntax A% = TRANSACTION_COUNT

Remarks “A%” is an integer variable to be assigned to the result.

Example …

DataCount:

 DataCount% = TRANSACTION_COUNT

 CLS

 PRINT DataCount%, “Transaction data is saved.”

 RETURN

 …

See Also TRANSACTION_COUNT_EX

TRANSACTION_COUNT_EX

Purpose To get the total number of transaction records saved in a specified transaction
file.

Syntax A% = TRANSACTION_COUNT_EX(file%)

Remarks “A%” is an integer variable to be assigned to the result.

“file%” is an integer variable in the range of 1 to 6, indicating which transaction
file to access. These commands work the same –

 TRANSACTION_COUNT_EX(1)

 TRANSACTION_COUNT

Example …

DataCount_1:

 DataCount% = TRANSACTION_COUNT_EX(1)

 CLS

PRINT DataCount%, “Data in transaction file 1.”

 RETURN

…

See Also TRANSACTION_COUNT

150

CipherLab 8600 BASIC Programming Part I

UPDATE_TRANSACTION

Purpose To update a transaction record in the first (= default) transaction file.

Syntax UPDATE_TRANSACTION(N%, data$)

Remarks “N%” is an integer variable, indicating the ordinal number of the transaction
record to be updated.

“data$” is a string variable, representing the character string to replace the old
data.

Example …

UpdateTransaction:

 UPDATE_TRANSACTION(Num%, NewData$)

RETURN

…

See Also GET_TRANSACTION_DATA$, SAVE_TRANSACTION, UPDATE_TRANSACTION_EX

UPDATE_TRANSACTION_EX

Purpose To update a transaction record in a specified transaction file.

Syntax UPDATE_TRANSACTION_EX(file%, N%, data$)

Remarks “file%” is an integer variable in the range of 1 to 6, indicating which transaction
file to access. These commands work the same –

 UPDATE_TRANSACTION_EX(1, N%, data$)

 UPDATE_TRANSACTION(N%, data$)

“N%” is an integer variable, indicating the ordinal number of the transaction
record to be updated.

“data$” is a string variable, representing the character string to replace the old
data.

Example …

UpdateTransaction_1:

 UPDATE_TRANSACTION_EX(1, Num%, NewData$)

 RETURN

 …

See Also GET_TRANSACTION_DATA_EX$, SAVE_TRANSACTION_EX,
UPDATE_TRANSACTION

 151

 Chapter 4 BASIC Commands

4.19.2 DBF FILES AND IDX FILES

This one is an index sequential file structure. Table look-up and report generation are
easily supported by using index sequential file routines. There are actually two types of
files associated with this file structure, namely, DBF files and IDX files.

 A DBF file has a fixed record length structure. This is the file that stores data records
(members). Whereas, the associate IDX files are the files that keep information of the
position of each record stored in the DBF files, but they are re-arranged (sorted)
according to some specific key values.

 In addition to the IDX files that are explicitly created by users, the BASIC run-time
maintains a default IDX file which keeps the original data sequence.

A library would be a good example to illustrate how DBF and IDX files work. When you
are trying to find a specific book in a library, you always start from the index. The book
can be found by looking into the index categories of book title, writer, publisher, ISBN
number, etc. All these index entries are sorted in ascending order for easy lookup
according to some specific information of books (book title, writer, publisher, ISBN
number, etc.) When the book is found in the index, it will tell you where the book is
actually stored.

As you can see, the books kept in the library are analogous to the data records stored in
the DBF file, and, the various index entries are just its associate IDX files. Some
information (book title, writer, publisher, ISBN number, etc.) in the data records is used
to create the IDX files.

KEY NUMBER

The length of each record in the DBF file is limited to 250 bytes. For mobile computers, a
BASIC program can have up to 5 DBF files. Each DBF file can have maximum 5
associated IDX files, and each of them is identified by its key (index) number.

Note: The valid key number ranges from 1 to 5.

KEY VALUE

Data records are not fetched directly from the DBF file but rather through its associated
IDX files.

The value of file pointers of the IDX files (index pointers) does not represent the address
of the data records stored in the DBF file. It indicates the sequence number of a specific
data record in the IDX file.

152

CipherLab 8600 BASIC Programming Part I

ADD_RECORD

Purpose To add a record to a specified DBF file.

Syntax ADD_RECORD(file%, data$)

Remarks “file%” is an integer variable in the range of 1 to 5, indicating which DBF file to
be accessed.

“data$” is a string variable, representing the character string which user
intends to add to the specified DBF file.

Example ON COM(1) GOSUB HostCommand

 …

HostCommand:

 Cmd$ = READ_COM$(1)

 CmdIdentifier$ = LEFT$(Cmd$, 1)

 DBFNum% = VAL(MID$(Cmd$, 2, 1))

 CardID$ = RIGHT$(Cmd$, LEN(Cmd$)-2)

 IF CmdIdentifier$ = “+” THEN

 ADD_RECORD(DBFNum%, CardID$)

 ELSE

 …

 153

 Chapter 4 BASIC Commands

DEL_RECORD

Purpose To delete the record pointed by the file pointer in a specified DBF file.

Syntax DEL_RECORD(file% [,index%])

Remarks “file%” is an integer variable in the range of 1 to 5, indicating which DBF file to
be accessed.

“index%” is an integer variable in the range of 1 to 5, indicating which IDX file
to be accessed. If it is not specified, then the default IDX file which keeps the
original data sequence will be used.

For example, if DBF 1 contains four records: 011-231, 120-117, 043-010,
067-150.

The key (index) of the first associate IDX file is defined as starting at position 1
with length of 3, and the key (index) of the second associate IDX file is defined
as starting at position 5 with length of 3. All the file pointers of the DBF file and
IDX files are currently pointing to the last record. Then, DEL_RECORD(1) will
delete 067-150, DEL_RECORD(1,1) will delete 120-117, DEL_RECORD(1,2) will
delete 011-231.

DBF 1

IDX 1

IDX 2

 011-231 011-231 043-010

 120-117 043-010 120-117

 043-010 067-150 067-150

--> 067-150 --> 120-117 --> 011-231

Example ON COM(1) GOSUB HostCommand

 …

HostCommand:

 Cmd$ = READ_COM$(1)

 CmdIdentifier$ = LEFT$(Cmd$, 1)

DBFNum% = VAL(MID$(Cmd$, 2, 1))

 IDXNum% = VAL(MID$(Cmd$, 3, 1))

 CardID$ = RIGHT$(Cmd$, LEN(Cmd$)-3)

 IF CmdIdentifier$ = “-” THEN

 DEL_RECORD(DBFNum%, IDXNum%)

 ELSE

…

154

CipherLab 8600 BASIC Programming Part I

EMPTY_FILE

Purpose To remove all the records from a specified DBF file.

Syntax EMPTY_FILE(file%)

Remarks “file%” is an integer variable in the range of 1 to 5, indicating which DBF file to
be accessed.

Note that if this function is called at the beginning of the program, data will be
deleted after the battery is replaced or System Menu is launched.

Example ON COM(1) GOSUB HostCommand

 …

HostCommand:

 Cmd$ = READ_COM$(1)

CmdIdentifier$ = LEFT$(Cmd$, 1)

 DBFNum% = VAL(MID$(Cmd$, 2, 1))

 IDXNum% = VAL(MID$(Cmd$, 3, 1))

 CardID$ = RIGHT$(Cmd$, LEN(Cmd$)-3)

 IF CmdIdentifier$ = “!” THEN

 EMPTY_FILE(DBFNum%)

ELSE

…

 155

 Chapter 4 BASIC Commands

FIND_RECORD

Purpose To search for records in a specified DBF file that matches the key string with
respect to a specified IDX.

Syntax A% = FIND_RECORD(file%, index%, key$)

Remarks “A%” is an integer variable to be assigned to the result.

“file%” is an integer variable in the range of 1 to 5, indicating which DBF file to
be accessed.

“index%” is an integer variable in the range of 1 to 5, indicating which IDX file
to be accessed.

“key$” is a string variable, representing the character string which indicates the
matching string to be found.

 If any record member in the DBF file matches the key string with respect to
the IDX file, FIND_RECORD will return 1, and the file pointer of the IDX file
will point to the first record with the matching string.

 If there is no match, the file pointer will point to the first record whose
index value is greater than the vale of “key$”.

Example ON COM(1) GOSUB HostCommand

 …

HostCommand:

 Cmd$ = READ_COM$(1)

 CmdIdentifier$ = LEFT$(Cmd$, 1)

 DBFNum% = VAL(MID$(Cmd$, 2, 1))

 IDXNum% = VAL(MID$(Cmd$, 3, 1))

 CardID$ = RIGHT$(Cmd$, LEN(Cmd$)-3)

 IF CmdIdentifier$ = “?” THEN

 IF FIND_RECORD(DBFNum%, IDXNum%, CardID$) = 1 THEN

 PRINT “Data is found in DBF.”, DBFNum%

 ELSE

 PRINT “Data is not found in DBF.”, DBFNum%

 END IF

ELSE

 …

156

CipherLab 8600 BASIC Programming Part I

GET_RECORD$

Purpose To get a record in a specified DBF file, which the file pointer of a specified IDX
file is pointing to.

Syntax A$ = GET_RECORD(file% [,index%])

Remarks “A$” is a string variable to be assigned to the result.

“file%” is an integer variable in the range of 1 to 5, indicating which DBF file to
be accessed.

“index%” is an integer variable in the range of 1 to 5, indicating which IDX file
to be accessed. If it is not specified, the default IDX file which keeps the
original data sequence will be used.

Example ON COM(1) GOSUB BcrData_1

 …

BcrData_1:

 BEEP(2000, 5)

 ID$ = GET_READER_DATA$(1)

 IF FIND_RECORD(DBFNum%, IDXNum%, ID$) = 1 THEN

 Data$ = GET_RECORD$(DBFNum%, IDXNum%)

 Item$ = MID$(Data$, LEN(Data$)-IDLeng%-ItemLeng%)

 Note$ = RIGHT$(Data$, LEN(Data$)-IDLeng%-ItemLeng%)

 LOCATE 1, 1

 PRINT “ID :”, Data$

 LOCATE 2, 1

 PRINT “Item :”, Item$

 LOCATE 3, 1

 PRINT “Note :”, Note$

 ELSE

 …

GET_RECORD_NUMBER

Purpose To get the ordinal number of the record pointed to by the file pointer of a
specified DBF file and IDX file.

Syntax A% = GET_RECORD_NUMBER(file% [,index%])

Remarks “A%” is an integer variable to be assigned to the number.

“file%” is an integer variable in the range of 1 to 5, indicating which DBF file to
be accessed.

“index%” is an integer variable in the range of 1 to 5, indicating which IDX file
to be accessed. If it is not specified, the default IDX file which keeps the
original data sequence will be used.

Example A% = GET_RECORD_NUMBER(1, 1)

 157

 Chapter 4 BASIC Commands

MOVE_TO

Purpose To move the file pointer, of a specified DBF and IDX files, to a specified
position.

Syntax MOVE_TO(file% [,index%], record_number%)

Remarks “file%” is an integer variable in the range of 1 to 5, indicating which DBF file to
be accessed.

“index%” is an integer variable in the range of 1 to 5, indicating which IDX file
to be accessed. If it is not specified, the default IDX file which keeps the
original data sequence will be used.

“record_number%” is a positive integer variable, indicating the ordinal number
of the record where the file pointer is moved to.

Example MOVE_TO(1, 1, 20)

MOVE_TO_NEXT

Purpose To move the file pointer, of a specified DBF and IDX files, one record forward.

Syntax MOVE_TO_NEXT(file% [,index%])

Remarks “file%” is an integer variable in the range of 1 to 5, indicating which DBF file to
be accessed.

“index%” is an integer variable in the range of 1 to 5, indicating which IDX file
to be accessed. If it is not specified, the default IDX file which keeps the
original data sequence will be used.

Example MOVE_TO_NEXT(1, 1)

MOVE_TO_PREVIOUS

Purpose To move the file pointer, of a specified DBF and IDX files, one record backward.

Syntax MOVE_TO_PREVIOUS(file% [,index%])

Remarks “file%” is an integer variable in the range of 1 to 5, indicating which DBF file to
be accessed.

“index%” is an integer variable in the range of 1 to 5, indicating which IDX file
to be accessed. If it is not specified, the default IDX file which keeps the
original data sequence will be used.

Example MOVE_TO_PREVIOUS(1, 1)

RECORD_COUNT

Purpose To get the total number of the records in a specified DBF file.

Syntax A% = RECORD_COUNT(file%)

Remarks “A%” is an integer variable to be assigned to the result.

“file%” is an integer variable in the range of 1 to 5, indicating which DBF file to
be accessed.

Example TotalRecord_1% = RECORD_COUNT(1)

158

CipherLab 8600 BASIC Programming Part I

UPDATE_RECORD

Purpose To update the record, which the file pointer of a specified DBF and IDX files is
pointing to.

Syntax UPDATE_RECORD(file%, index%, data$)

Remarks “file%” is an integer variable in the range of 1 to 5, indicating which DBF file to
be accessed.

“index%” is an integer variable in the range of 1 to 5, indicating which IDX file
to be accessed. If it is not specified, the default IDX file which keeps the
original data sequence will be used.

“data$” is a string variable, representing the character string to replace the old
data.

Example ON COM(1) GOSUB HostCommand

 …

HostCommand:

 Cmd$ = READ_COM$(1)

 CmdIdentifier$ = LEFT$(Cmd$, 1)

 DBFNum% = VAL(MID$(Cmd$, 2, 1))

 IDXNum% = VAL(MID$(Cmd$, 3, 1))

 CardID$ = RIGHT$(Cmd$, LEN(Cmd$)-3)

 IF CmdIdentifier$ = “&” THEN

 UPDATE_RECORD(DBFNum%, IDXNum%, CardID$)

 ELSE

 …

 159

 Chapter 4 BASIC Commands

4.19.3 ERROR CODE

The command GET_FILE_ERROR returns the error code, which is a number that indicates
the result of the last file manipulation. A value other than 0 indicates error.

GET_FILE_ERROR

Purpose To get the error code of the previous file manipulation command.

Syntax A% = GET_FILE_ERROR

Remarks “A%” is an integer variable to be assigned to the result.

 If there is no error, it returns 0.

 If it returns a value other than 0, possible error code and its interpretation
will be listed as follows.

Error Code Interpretation

10 No free memory for file extension.

For other types of error, e.g. invalid file ID, it will cause a run-time error.

Example …

ADD_RECORD(1, Data$)

IF (GET_FILE_ERROR = 10) THEN

 ErrorMessage$ = “No free file space.”

END IF

…

160

CipherLab 8600 BASIC Programming Part I

4.20 SD CARD

SD card can be accessed directly by using the provided functions in user application. Yet,
when the mobile computer is connected to your computer via the USB cable, it can be
treated as a removable disk (USB mass storage device) as long as it is configured
properly through programming or via System Menu | Storage Menu | Run As USB
Disk. Refer to Part II: USB Connection. For memory information, refer to 4.18.3 SD
Card.

Direct Access to SD for DAT Files
 Use the functions provided in 4.19.1 DAT Files to access DAT files on SD card, which must be

under the directory “\BasicRun”.

 The size of DAT files on SD card can be calibrated via System Menu. If the function
DEL_TRANSACTION_DATA() or DEL_TRANSACTION_DATA_EX() is called in BASIC applications
to remove records from file top, the space will not be released immediately. Users have to
refresh the size of “A:\BASICRUN\TXACTn.DAT” (n=1~6) via System Menu | SD Card Menu |
Access SD Card | Check File Size.

Direct Access to SD for DBF Files
 Use the functions provided in 4.19.2 DBF Files and IDX Files to access DBF files on SD card,

which must be under the directory “\BasicRun”. When creating DBF files, it will have “.DB0” as
the filename extension for the DBF file itself and “.DB1” ~ “.DB4” for the IDX files.

4.20.1 FILE SYSTEM

It supports FAT12/FAT16/FAT32 and allows formatting the card through C programming
or via System Menu | SD Card Menu | Access SD Card. Based on the capacity of the
card, it will automatically decide the FAT format:

Card Capacity FAT Format Sectors per Cluster

≦ 32 MB FAT12 32

≦ 1 GB FAT16 32

≦ 2 GB FAT16 64

≦ 8 GB FAT32 8

 161

 Chapter 4 BASIC Commands

4.20.2 DIRECTORY

Unlike the file system on SRAM, the file system on SD card supports hierarchical tree
directory structure and allows creating sub-directories. Several directories are reserved
for particular use.

Reserved Directory Related Application or Function Remark

\Program  System Menu | Load Program

 Program Manager | Download

 Program Manager | Activate

 Kernel Menu | Load Program

 Kernel Menu | Kernel Update

 UPDATE_BASIC()

Store programs to this folder so that you can
download them to the mobile computer:

 C program — *.SHX

 BASIC program — *.INI and *.SYN

\BasicRun BASIC Runtime Store DAT and DBF files that are created and
accessed in BASIC runtime to this folder.
Their permanent filenames are as follows:

DAT Filename

DAT file #1 TXACT1.DAT

DAT file #2 TXACT2.DAT

DAT file #3 TXACT3.DAT

DAT file #4 TXACT4.DAT

DAT file #5 TXACT5.DAT

DAT file #6 TXACT6.DAT

DBF Filename

DBF file #1 Record file F1.DB0

System Default
Index

F1.DB1

Index file #1 F1.DB2

Index file #2 F1.DB3

Index file #3 F1.DB4

Index file #4 F1.DB5

Index file #5 F1.DB6

DBF file #2 Record file F2.DB0

System Default
Index

F2.DB1

Index file #1 F2.DB2

Index file #2 F2.DB3

Index file #3 F2.DB4

Index file #4 F2.DB5

Index file #5 F2.DB6

162

CipherLab 8600 BASIC Programming Part I

 DBF file #3 Record file F3.DB0

System Default
Index

F3.DB1

Index file #1 F3.DB2

Index file #2 F3.DB3

Index file #3 F3.DB4

Index file #4 F3.DB5

Index file #5 F3.DB6

DBF file #4 Record file F4.DB0

System Default
Index

F4.DB1

Index file #1 F4.DB2

Index file #2 F4.DB3

Index file #3 F4.DB4

Index file #4 F4.DB5

Index file #5 F4.DB6

DBF file #5 Record file F5.DB0

System Default
Index

F5.DB1

Index file #1 F5.DB2

Index file #2 F5.DB3

Index file #3 F5.DB4

Index file #4 F5.DB5

Index file #5 F5.DB6

\AG\DBF

\AG\DAT

\AG\EXPORT

\AG\IMPORT

Application Generator (a.k.a. AG) Store DAT, DBF, and Lookup files that are
created and/or accessed in Application
Generator to this folder.

 163

 Chapter 4 BASIC Commands

4.20.3 FILE NAME

A file name must follow 8.3 format (= short filenames) — at most 8 characters for
filename, and at most three characters for filename extension. The following characters
are unacceptable: “ * + , : ; < = > ? | []

 It can only display a filename of 1 ~ 8 characters (the null character not included),
and filename extension will be displayed if provided. If a file name specified is longer
than eight characters, it will be truncated to eight characters.

 Long filenames, at most 255 characters, are allowed when using the mobile computer
equipped with SD card as a mass storage device. For example, you may have a
filename “123456789.txt” created from your computer. However, when the same file
is directly accessed on the mobile computer, the filename will be truncated to
“123456~1.txt”.

 If a file name is specified other in ASCII characters, in order for the mobile computer
to display it correctly, you may need to download a matching font file to the mobile
computer first.

 The file name is not case-sensitive.

164

CipherLab 8600 BASIC Programming Part I

 165

IN THIS CHAPTER

Symbology Parameter Table for CCD/Laser Reader 165
Symbology Parameter Table for 2D Reader 173

SYMBOLOGY PARAMETER TABLE FOR CCD/LASER READER

No. (N1%) Values (N2%) & Description Default Scan Engine

1 1: Enable Code 39

0: Disable Code 39

1 CCD, Laser

2 1: Enable Italian Pharmacode

0: Disable Italian Pharmacode

0 CCD, Laser

3 1: Enable CIP 39 (French Pharmacode)

0: Disable CIP 39

0 CCD, Laser

4 1: Enable Industrial 25

0: Disable Industrial 25

1 CCD, Laser

5 1: Enable Interleaved 25

0: Disable Interleaved 25

1 CCD, Laser

6 1: Enable Matrix 25

0: Disable Matrix 25

0 CCD, Laser

7 1: Enable Codabar (NW7)

0: Disable Codabar (NW7)

1 CCD, Laser

8 1: Enable Code 93

0: Disable Code 93

1 CCD, Laser

9 1: Enable Code 128 & EAN-128

0: Disable Code 128 & EAN-128

1 CCD, Laser

10 1: Enable UPC-E

0: Disable UPC-E

1 CCD, Laser

11 1: Enable UPC-E Addon 2

0: Disable UPC-E Addon 2

0 CCD, Laser

12 1: Enable UPC-E Addon 5

0: Disable UPC-E Addon 5

0 CCD, Laser

Appendix I
SCANNERDESTBL ARRAYS

166

CipherLab 8600 BASIC Programming Part I

13 1: Enable EAN-8

0: Disable EAN-8

1 CCD, Laser

14 1: Enable EAN-8 Addon 2

0: Disable EAN-8 Addon 2

0 CCD, Laser

15 1: Enable EAN-8 Addon 5

0: Disable EAN-8 Addon 5

0 CCD, Laser

16 1: Enable EAN-13 & UPC-A

0: Disable EAN-13 & UPC-A

1 CCD, Laser

17 1: Enable EAN-13 & UPC-A Addon 2

0: Disable EAN-13 & UPC-A Addon 2

0 CCD, Laser

18 1: Enable EAN-13 & UPC-A Addon 5

0: Disable EAN-13 & UPC-A Addon 5

0 CCD, Laser

19 1: Enable MSI

0: Disable MSI

0 CCD, Laser

20 1: Enable Plessey

0: Disable Plessey

0 CCD, Laser

21 1: Enable Coop 25

0: Disable Coop 25

0 CCD, Laser

22 1: Transmit Code 39 Start/Stop Character

0: DO NOT transmit Code 39 Start/Stop Character

0 CCD, Laser

23 1: Verify Code 39 Check Digit

0: DO NOT verify Code 39 Check Digit

0 CCD, Laser

24 1: Transmit Code 39 Check Digit

0: DO NOT transmit Code 39 Check Digit

1 CCD, Laser

25 1: Full ASCII Code 39

0: Standard Code 39

0 CCD, Laser

26 1: Transmit Italian Pharmacode Check Digit

0: DO NOT transmit Italian Pharmacode Check Digit

0 CCD, Laser

27 1: Transmit CIP 39 Check Digit

0: DO NOT transmit CIP 39 Check Digit

0 CCD, Laser

28 1: Verify Interleaved 25 Check Digit

0: DO NOT verify Interleaved 25 Check Digit

0 CCD, Laser

29 1: Transmit Interleaved 25 Check Digit

0: DO NOT transmit Interleaved 25 Check Digit

1 CCD, Laser

30 1: Verify Industrial 25 Check Digit

0: DO NOT verify Industrial 25 Check Digit

0 CCD, Laser

 167

 Appendix I ScannerDesTbl Arrays

31 1: Transmit Industrial 25 Check Digit

0: DO NOT transmit Industrial 25 Check Digit

1 CCD, Laser

32 1: Verify Matrix 25 Check Digit

0: DO NOT verify Matrix 25 Check Digit

0 CCD, Laser

33 1: Transmit Matrix 25 Check Digit

0: DO NOT transmit Matrix 25 Check Digit

1 CCD, Laser

34 Select Interleaved 25 Start/Stop Pattern

0: Use Industrial 25 Start/Stop Pattern

1: Use Interleaved 25 Start/Stop Pattern

2: Use Matrix 25 Start/Stop Pattern

1 CCD, Laser

35 Select Industrial 25 Start/Stop Pattern

0: Use Industrial 25 Start/Stop Pattern

1: Use Interleaved 25 Start/Stop Pattern

2: Use Matrix 25 Start/Stop Pattern

0 CCD, Laser

36 Select Matrix 25 Start/Stop Pattern

0: Use Industrial 25 Start/Stop Pattern

1: Use Interleaved 25 Start/Stop Pattern

2: Use Matrix 25 Start/Stop Pattern

2 CCD, Laser

37 Select Codabar Start/Stop Character

0: abcd/abcd

1: abcd/tn*e

2: ABCD/ABCD

3: ABCD/TN*E

0 CCD, Laser

38 1: Transmit Codabar Start/Stop Character

0: DO NOT transmit Codabar Start/Stop Character

0 CCD, Laser

39 MSI Check Digit Verification

0: Single Modulo 10

1: Double Modulo 10

2: Modulo 11 and Modulo 10

2 CCD, Laser

40 MSI Check Digit Transmission

0: Last Check Digit is NOT transmitted

1: Both Check Digits are transmitted

2: Both Check Digits are NOT transmitted

1 CCD, Laser

41 1: Transmit Plessey Check Digits

0: DO NOT transmit Plessey Check Digits

1 CCD, Laser

42 1: Convert Standard Plessey to UK Plessey

0: No conversion

1 CCD, Laser

168

CipherLab 8600 BASIC Programming Part I

43 1: Convert UPC-E to UPC-A

0: No conversion

0 CCD, Laser

44 1: Convert UPC-A to EAN-13

0: No conversion

1 CCD, Laser

45 1: Enable ISBN Conversion

0: No conversion

0 CCD, Laser

46 1: Enable ISSN Conversion

0: No conversion

0 CCD, Laser

47 1: Transmit UPC-E Check Digit

0: DO NOT transmit UPC-E Check Digit

1 CCD, Laser

48 1: Transmit UPC-A Check Digit

0: DO NOT transmit UPC-A Check Digit

1 CCD, Laser

49 1: Transmit EAN-8 Check Digit

0: DO NOT transmit EAN8 Check Digit

1 CCD, Laser

50 1: Transmit EAN-13 Check Digit

0: DO NOT transmit EAN13 Check Digit

1 CCD, Laser

51 1: Transmit UPC-E System Number

0: DO NOT transmit UPC-E System Number

0 CCD, Laser

52 1: Transmit UPC-A System Number

0: DO NOT transmit UPC-A System Number

1 CCD, Laser

53 1: Convert EAN-8 to EAN-13

0: No conversion

0 CCD, Laser

54 1: Convert EAN8 to EAN13 in GTIN-13 format

0: Convert EAN8 to EAN13 in Default format

0 CCD, Laser

55 1: Enable Negative Barcode

0: Disable Negative Barcode

1 CCD, Laser

56 3: Three Times Read Redundancy for Scanner Port 1

2: Two Times Read Redundancy for Scanner Port 1

1: One Time Read Redundancy for Scanner Port 1

0: No Read Redundancy for Scanner Port 1

0 CCD, Laser

57 (Not for mobile computers.) --- ---

58 1: Industrial 25 Code Length Limitation in Max/Min Length
Format

0: Industrial 25 Code Length Limitation in Fixed Length
Format

1 CCD, Laser

59 Industrial 25 Max Code Length / Fixed Length 1 Max. 127 CCD, Laser

60 Industrial 25 Min Code Length / Fixed Length 2 Min. 4 CCD, Laser

 169

 Appendix I ScannerDesTbl Arrays

61 1: Interleaved 25 Code Length Limitation in Max/Min Length
Format

0: Interleaved 25 Code Length Limitation in Fixed Length
Format

1 CCD, Laser

62 Interleaved 25 Max Code Length / Fixed Length 1 Max. 127 CCD, Laser

63 Interleaved 25 Min Code Length / Fixed Length 2 Min. 4 CCD, Laser

64 1: Matrix 25 Code Length Limitation in Max/Min Length
Format

0: Matrix 25 Code Length Limitation in Fixed Length Format

1 CCD, Laser

65 Matrix 25 Max Code Length / Fixed Length 1 Max. 127 CCD, Laser

66 Matrix 25 Min Code Length / Fixed Length 2 Min. 4 CCD, Laser

67 1: MSI 25 Code Length Limitation in Max/Min Length Format

0: MSI 25 Code Length Limitation in Fixed Length Format

1 CCD, Laser

68 MSI Max Code Length / Fixed Length 1 Max. 127 CCD, Laser

69 MSI Min Code Length / Fixed Length 2 Min. 4 CCD, Laser

70 Scan Mode for Scanner Port 1

8: Aiming Mode

7: Test Mode

6: Laser Mode

5: Repeat Mode

4: Momentary Mode

3: Alternate Mode

2: Auto Power Off Mode

1: Continuous Mode

0: Auto Off Mode

6 CCD, Laser

71 (Not for mobile computers.) --- ---

72 Scanner time-out duration in seconds for Aiming mode, Laser
mode, Auto Off mode, and Auto Power Off mode

1 ~ 255 (sec): Decode time-out

0: No time-out

3 sec. CCD, Laser

73 (Not for mobile computers.) --- ---

74 1: Enable GS1 DataBar Limited

0: Disable GS1 DataBar Limited

0 CCD, Laser

75 Reserved --- ---

76 1: Enable GS1 DataBar Omnidirectional & GS1 DataBar
Expanded

0: Disable GS1 DataBar Omnidirectional & GS1 DataBar
Expanded

0 CCD, Laser

170

CipherLab 8600 BASIC Programming Part I

77 1: Transmit GS1 DataBar Omnidirectional Code ID

0: DO NOT transmit GS1 DataBar Omnidirectional Code ID

1 CCD, Laser

78 1: Transmit GS1 DataBar Omnidirectional Application ID

0: DO NOT transmit GS1 DataBar Omnidirectional Application
ID

1 CCD, Laser

79 1: Transmit GS1 DataBar Omnidirectional Check Digit

0: DO NOT transmit GS1 DataBar Omnidirectional Check Digit

1 CCD, Laser

80 1: Transmit GS1 DataBar Limited Code ID

0: DO NOT transmit GS1 DataBar Limited Code ID

1 CCD, Laser

81 1: Transmit GS1 DataBar Limited Application ID

0: DO NOT transmit GS1 DataBar Limited Application ID

1 CCD, Laser

82 1: Transmit GS1 DataBar Limited Check Digit

0: DO NOT transmit GS1 DataBar Limited Check Digit

1 CCD, Laser

83 1: Transmit GS1 DataBar Expanded Code ID

0: DO NOT transmit GS1 DataBar Expanded Code ID

1 CCD, Laser

84 1: Enable original Telepen (= Numeric mode)

0: Disable original Telepen (= ASCII mode)

0 CCD, Laser

85 1: Enable Telepen

0: Disable Telepen

0 CCD, Laser

86 1: Enable UPC-E1 & UPC-E0

0: Enable UPC-E0 only

0 CCD, Laser

87 1: Enable GTIN

0: Disable GTIN

0 CCD, Laser

88 ~ 147 N/A --- ---

148 1: Enable UPC-E Triple Check

0: Disable UPC-E Triple Check

0 CCD, Laser

149 Aiming time-out duration for Aiming mode

1 ~ 65535 (in units of 5 milliseconds): Aiming time-out

0: No aiming

200

(= 1
sec.)

CCD, Laser

150 #9 for Code 128 & EAN-128 is required to be 1.

0: Decode Code 128 & EAN-128

 (for compatibility with old firmware version)

1: Decode EAN- 128 only

2: Decode Code 128 only

3: Decode Code 128 & EAN-128

0 CCD, Laser

 171

 Appendix I ScannerDesTbl Arrays

151 #9 for Code 128 & EAN-128 is required to be 1.

1: Strip EAN-128 Code ID

0: DO NOT strip EAN-128 Code ID

 (for compatibility with old firmware version)

0 CCD, Laser

152 1: Enable ISBT 128

0: Disable ISBT 128

1 CCD, Laser

153~170 N/A --- ---

171 1: Verify Coop 25 Check Digit

0: DO NOT verify Coop 25 Check Digit

0 CCD, Laser

172 1: Transmit Coop 25 Check Digit

0: DO NOT transmit Coop 25 Check Digit

1 CCD, Laser

173 Code 39 Security Level

1: Normal

0: High

0 CCD, Laser

174 1: Enable GS1 formatting for EAN-128

0: Disable GS1 formatting for EAN-128

0 CCD, Laser

175 1: Enable GS1 formatting for GS1 DataBar Family

0: Disable GS1 formatting for GS1 DataBar Family

0 CCD, Laser

176 AIMark[0] 0 CCD, Laser

177 AIMark[1] 0 CCD, Laser

178 FsEAN128[0] 0 CCD, Laser

179 FsEAN128[1] 0 CCD, Laser

180 ~
189

N/A

190 1: UPC/EAN security high

0: UPC/EAN security normal

0 CCD, Laser

191 ~
299

N/A

300 1: Enable EAN-13 Addon Mode 414/419/434/439

0: Disable EAN-13 Addon Mode 414/419/434/439

0 CCD, Laser

301 1: Enable EAN-13 Addon Mode 378/379

0: Disable EAN-13 Addon Mode 378/379

0 CCD, Laser

302 1: Enable EAN-13 Addon Mode 977

0: Disable EAN-13 Addon Mode 977

0 CCD, Laser

303 1: Enable EAN-13 Addon Mode 978

0: Disable EAN-13 Addon Mode 978

0 CCD, Laser

304 1: Enable EAN-13 Addon Mode 979

0: Disable EAN-13 Addon Mode 979

0 CCD, Laser

172

CipherLab 8600 BASIC Programming Part I

305 1: Enable EAN-13 Addon Mode 491

0: Disable EAN-13 Addon Mode 491

0 CCD, Laser

306 1: Enable EAN-13 Addon Mode 529

0: Disable EAN-13 Addon Mode 529

0 CCD, Laser

307 N/A

308 Addon security for UPC/EAN barcodes

Level: 0~30

0 CCD, Laser

309 ~
311

N/A

312 1: Skip checking Code 128 quiet zone

0: Check Code 128 quiet zone

0 CCD, Laser

313 1: Skip checking Code 39 quiet zone

0: Check Code 39 quiet zone

0 CCD, Laser

314 1: Skip checking UPC/EAN quiet zone

0: Check Code UPC/EAN quiet zone

0 CCD, Laser

315 1: Skip checking Codabar quiet zone

0: Check Codabar quiet zone

0 CCD, Laser

316 1: Skip checking Plessey quiet zone

0: Check Plessey quiet zone

0 CCD, Laser

317 1: Skip checking Code 93 quiet zone

0: Check Code 93 quiet zone

0 CCD, Laser

 173

 Appendix I ScannerDesTbl Arrays

SYMBOLOGY PARAMETER TABLE FOR 2D READER

No. (N1%) Values (N2%) & Description Default Scan Engine

1 1: Enable Code 39

0: Disable Code 39

1 2D

2 1 : Enable Code 32 (Italian Pharmacode)

0 : Disable Code 32

0 2D

3 N/A --- ---

4 N/A --- ---

5 1: Enable Interleaved 25

0: Disable Interleaved 25

1 2D

6 Matrix 25 0 2D

7 1: Enable Codabar (NW7)

0: Disable Codabar (NW7)

1 2D

8 1: Enable Code 93

0: Disable Code 93

1 2D

9 1: Enable Code 128

0: Disable Code 128

1 2D

10 1: Enable UPC-E0

0: Disable UPC-E0 (depends)

1 2D

11,

12

1: Enable Only Addon 2 & 5 of UPC & EAN Families

 (It requires “ANY” of the indexes to be set 1.)

0: Disable Only Addon 2 & 5 of UPC & EAN Families

 (It requires “ALL” of the indexes to be set 0.)

 Refer to 14, 15, 17, 18, 107, and 109.

0 2D

13 1: Enable EAN-8

0: Disable EAN-8 (depends)

1 2D

14,

15

See #11, #12. 0 2D

16 1: Enable EAN-13

0: Disable EAN-13 (depends)

1 2D

17,

18

See #11, #12. 0 2D

19 1: Enable MSI

0: Disable MSI

0 2D

20 N/A --- ---

21 Reserved --- ---

174

CipherLab 8600 BASIC Programming Part I

22 N/A --- ---

23 1: Verify Code 39 Check Digit

0: DO NOT verify Code 39 Check Digit

0 2D

24 1: Transmit Code 39 Check Digit

0: DO NOT transmit Code 39 Check Digit

0 2D

25 1: Full ASCII Code 39

0: Standard Code 39

0 2D

26 N/A --- ---

27 N/A --- ---

28 N/A --- ---

29 1: Transmit Interleaved 25 Check Digit

0: DO NOT transmit Interleaved 25 Check Digit

0 2D

30 N/A --- ---

31 N/A --- ---

32 1: Verify Matrix 25 Check Digit

0: DO NOT verify Matrix 25 Check Digit

0 2D

33 1: Transmit Matrix 25 Check Digit

0: DO NOT transmit Matrix 25 Check Digit

0 2D

34 N/A --- ---

35 N/A --- ---

36 N/A --- ---

37 N/A --- ---

38 1: Transmit Codabar Start/Stop Character

0: DO NOT transmit Codabar Start/Stop Character

0 2D

39 MSI Check Digit Verification

2: Modulo 11 and Modulo 10

1: Double Modulo 10

0: Single Modulo 10

1 2D

40 MSI Check Digit Transmission

2: Both check digits are NOT transmitted

1: Both check digits are transmitted

0: Last check digit is NOT transmitted

0 2D

41 N/A --- ---

42 N/A --- ---

43 1: Convert UPC-E0 to UPC-A

0: No conversion

0 2D

 175

 Appendix I ScannerDesTbl Arrays

44 1: Convert UPC-A to EAN-13

0: No conversion

0 2D

45 N/A --- ---

46 N/A --- ---

47 1: Transmit UPC-E0 Check Digit

0: DO NOT transmit UPC-E0 Check Digit

1 2D

48 1: Transmit UPC-A Check Digit

0: DO NOT transmit UPC-A Check Digit

1 2D

49 N/A --- ---

50 N/A --- ---

51 1: Transmit UPC-E0 System Number

0: DO NOT transmit UPC-E0 System Number

1 2D

52 1: Transmit UPC-A System Number

0: DO NOT transmit UPC-A System Number

1 2D

53 1: Convert EAN-8 to EAN-13

0: No conversion

1 2D

54 Reserved --- ---

55 N/A --- ---

56 N/A --- ---

57 (Not for mobile computers.) --- ---

58 N/A --- ---

59 N/A --- ---

60 N/A --- ---

61 1: Interleaved 25 Code Length Limitation in Max/Min Length
Format

0: Interleaved 25 Code Length Limitation in Fixed Length
Format

1 2D

62 Interleaved 25 Max Code Length / Fixed Length 1 Max. 55 2D

63 Interleaved 25 Min Code Length / Fixed Length 2
NoteLength1 must be greater than Length2.

Min. 4 2D

64 1: Matrix 25 Code Length Limitation in Max/Min Length
Format

0: Matrix 25 Code Length Limitation in Fixed Length Format

1 2D

65 Matrix 25 Max Code Length / Fixed Length 1 Max. 55 2D

66 Matrix 25 Min Code Length / Fixed Length 2
NoteLength1 must be greater than Length2.

Min. 4 2D

67 1: MSI 25 Code Length Limitation in Max/Min Length Format

0: MSI 25 Code Length Limitation in Fixed Length Format

1 2D

176

CipherLab 8600 BASIC Programming Part I

68 MSI Max Code Length / Fixed Length 1 Max. 55 2D

69 MSI Min Code Length / Fixed Length 2
NoteLength1 must be greater than Length2.

Min. 4 2D

70 Scan Mode for Scanner Port 1

8: Aiming Mode

7: Test Mode

3: Alternate Mode

1: Continuous Mode

0: Auto-off Mode

Any value other than the above: Laser Mode

Laser
Mode

2D

71 (Not for mobile computers.) --- ---

72 N/A --- ---

73 (Not for mobile computers.) --- ---

74 N/A --- ---

75 N/A --- ---

76 N/A --- ---

77 N/A --- ---

78 N/A --- ---

79 N/A --- ---

80 N/A --- ---

81 N/A --- ---

82 N/A --- ---

83 N/A --- ---

84 N/A --- ---

85 N/A --- ---

86 N/A --- ---

87 N/A --- ---

88 1: Code 39 Length Limitation in Max/Min Length Format

0: Code 39 Length Limitation in Fixed Length Format

1 2D

89 Code 39 Max Code Length / Fixed Length1 Max. 55 2D

90 Code 39 Min Code Length / Fixed Length2
NoteLength1 must be greater than Length2.

Min. 4 2D

91 1: Transmit UPC-E1 System Number

0: DO NOT transmit UPC-E1 System Number

0 2D

92 1: Transmit UPC-E1 Check Digit

0: DO NOT transmit UPC-E1 Check Digit

0 2D

 177

 Appendix I ScannerDesTbl Arrays

93 1 : Enable GS1-128 Emulation Mode for UCC/EAN Composite
Codes

0 : Disable GS1-128 Emulation Mode for UCC/EAN Composite
Codes

0 2D

94 1: Enable TCIF Linked Code 39

0: Disable TCIF Linked Code 39

0 2D

95 1: Convert UPC-E1 to UPC-A

0: No conversion

0 2D

96 1: Enable Code 11

0: Disable Code 11

0 2D

97 1: Enable Bookland EAN

 (#16 for EAN-13 is required to be 1.)

0: Disable Bookland EAN

0 2D

98 1: Enable Industrial 25 (Discrete 25)

0: Disable Industrial 25 (Discrete 25)

1 2D

99 1: Enable ISBT 128

0: Disable ISBT 128

1 2D

100 1: Enable Trioptic Code 39

0: Disable Trioptic Code 39

0 2D

101 1: Enable UCC/EAN-128

0: Disable UCC/EAN-128

1 2D

102 1: Convert GS1 DataBar to UPC/EAN

0: No conversion

0 2D

103 1: Enable GS1 DataBar Expanded

0: Disable GS1 DataBar Expanded

1 2D

104 1: Enable GS1 DataBar Limited

0: Disable GS1 DataBar Limited

1 2D

105 1: Enable GS1 DataBar Omnidirectional

0: Disable GS1 DataBar Omnidirectional

1 2D

106 1: Enable UPC-A

0: Disable UPC-A (depends)

1 2D

107,

109

1: Enable Only Addon 2 & 5 of UPC & EAN Families

 (It requires “ANY” of the indexes to be set 1.)

0: Disable Only Addon 2 & 5 of UPC & EAN Families

 (It requires “ALL” of the indexes to be set 0.)

 Refer to 11, 12, 14, 15, 17 and 18.

0 2D

108 1: Enable UPC-E1

0: Disable UPC-E1 (depends)

0 2D

178

CipherLab 8600 BASIC Programming Part I

110 2: Autodiscriminate UPC Composite

1: UPC Always Linked

0: UPC Never Linked

1 2D

111 1: Enable Composite CC-A/B

0: Disable Composite CC-A/B

0 2D

112 1: Enable Composite CC-C

0: Disable Composite CC-C

0 2D

113 1: Code 93 Length Limitation in Max/Min Length Format

0: Code 93 Length Limitation in Fixed Length Format

1 2D

114 Code 93 Max Code Length / Fixed Length1 Max. 55 2D

115 Code 93 Min Code Length / Fixed Length2
NoteLength1 must be greater than Length2.

Min. 4 2D

116 1: Code 11 Length Limitation in Max/Min Length Format

0: Code 11 Length Limitation in Fixed Length Format

1 2D

117 Code 11 Max Code Length / Fixed Length1 Max. 55 2D

118 Code 11 Min Code Length / Fixed Length2
NoteLength1 must be greater than Length2.

Min. 4 2D

119 1: Industrial 25 (Discrete 25) Length Limitation in Max/Min
Length Format

0: Industrial 25 (Discrete 25) Length Limitation in Fixed
Length Format

1 2D

120 Industrial 25 (Discrete 25) Max Code Length / Fixed Length1 Max. 55 2D

121 Industrial 25 (Discrete 25) Min Code Length / Fixed Length2
NoteLength1 must be greater than Length2.

Min. 4 2D

122 1: Codabar Length Limitation in Max/Min Length Format

0: Codabar Length Limitation in Fixed Length Format

1 2D

123 Codabar Max Code Length / Fixed Length1 Max. 55 2D

124 Codabar Min Code Length / Fixed Length2
NoteLength1 must be greater than Length2.

Min. 4 2D

125 1: Transmit US Postal Check Digit

0: DO NOT transmit US Postal Check Digit

1 2D

126 1: Enable Maxicode

0: Disable Maxicode

1 2D

127 1: Enable Data Matrix

0: Disable Data Matrix

1 2D

128 1 : Enable QR Code

0 : Disable QR Code

1 2D

 179

 Appendix I ScannerDesTbl Arrays

129 1: Enable US Planet

0: Disable US Planet

1 2D

130 1: Enable US Postnet

0: Disable US Postnet

1 2D

131 1: Enable MicroPDF417

0: Disable MicroPDF417

1 2D

132 1: Enable PDF417

0: Disable PDF417

1 2D

133 Reserved --- ---

134 1 : Enable Japan Postal

0 : Disable Japan Postal

1 2D

135 1: Enable Australian Postal

0: Disable Australian Postal

1 2D

136 1: Enable Dutch Postal

0: Disable Dutch Postal

1 2D

137 1: Enable UK Postal Check Digit

0: Disable UK Postal Check Digit

1 2D

138 1: Enable UK Postal

0: Disable UK Postal

1 2D

139 1: Enable Joint Configuration of No Addon, Addon 2 & 5 for
Any Member of UPC/EAN Families Note

0: Disable Joint Configuration

0 2D

140 2: Verify Interleaved 25 OPCC Check Digit

1: Verify Interleaved 25 USS Check Digit

0: DO NOT verify Interleaved 25 Check Digit

0 2D

141 1: Enable UPC-A System Number & Country Code

0: Disable UPC-A System Number & Country Code

1 2D

142 1: Enable UPC-E0 System Number & Country Code

0: Disable UPC-E0 System Number & Country Code

1 2D

143 1: Enable UPC-E1 System Number & Country Code

0: Disable UPC-E1 System Number & Country Code

1 2D

144 1: Convert Interleaved 25 to EAN-13

0: No conversion

0 2D

145 Scanner time-out duration in seconds for Aiming mode,
Laser mode and Auto-off mode

1 ~ 255 (sec): Decode time-out

0: No time-out (= always scanning)

3 sec. 2D

180

CipherLab 8600 BASIC Programming Part I

146 Macro PDF Transmit / Decode Mode

2: Transmit any symbol in set / No particular order

1: Buffer all symbols / Transmit Macro PDF when complete

0: Passthrough all symbols

0 2D

147 1: Enable Macro PDF Escape Characters

0: Disable Macro PDF Escape Characters

0 2D

148 N/A --- ---

149 Aiming time-out duration for Aiming mode

1 ~ 65535 (in units of 5 milliseconds): Aiming time-out

0: No aiming

200

(= 1
sec.)

2D

150 N/A --- ---

151 N/A --- ---

152 N/A --- ---

153 Focus Mode

2: Smart Focus

1: Near Focus

0: Far Focus

0 2D

154 1: Enable Decode Aiming Pattern

0: Disable Decode Aiming Pattern

1 2D

155 1: Enable Decode Illumination

0: Disable Decode Illumination

1 2D

156 1: Enable Picklist Mode

0: Disable Picklist Mode

0 2D

157 1D Inverse Decoder

2: Decode both regular and inverse

1: Decode inverse 1D barcode only

0: Decode regular 1D barcode only

0 2D

158 1: Reader sleeps during system suspend

0: Reader is powered off during system suspend

0 2D

159 1: Enable USPS 4CB / One Code / Intelligent Mail

0: Disable USPS 4CB / One Code / Intelligent Mail

0 2D

160 1: Enable UPU FICS Postal

0: Disable UPU FICS Postal

0 2D

161 UPC/EAN – Bookland ISBN Format

1: UPC/EAN – Bookland ISBN 13

0: UPC/EAN – Bookland ISBN 10

0 2D

 181

 Appendix I ScannerDesTbl Arrays

162 Data Matrix Inverse

2: Decode both regular and inverse

1: Decode inverse Data Matrix only

0: Decode regular Data Matrix only

0 2D

163 Data Matrix Mirror

2: Decode both mirrored and unmirrored

1: Decode mirrored Data Matrix only

0: Decode unmirrored Data Matrix only

0 2D

164 QR Code Inverse

2: Decode both regular and inverse

1: Decode inverse QR Code only

0: Decode regular QR Code only

0 2D

165 1: Enable MicroQR

0: Disable MicroQR

1 2D

166 1: Enable Aztec

0: Disable Aztec

1 2D

167 Aztec Inverse

2: Decode both regular and inverse

1: Decode inverse Aztec only

0: Decode regular Aztec only

0 2D

168 1: Enable Coupon Code

0: Disable Coupon Code

0 2D

169 1: Enable Chinese 25

0: Disable Chinese 25

0 2D

170 Code 11 Check Digit Verification

2: Two check digits

1: One check digit

0: Disable

0 2D

171 N/A --- ---

172 N/A --- ---

174 1: Enable GS1 formatting for EAN-128

0: Disable GS1 formatting for EAN-128

0 2D

176 AIMark[0] 0 2D

177 AIMark[1] 0 2D

178 FsEAN128[0] 0 2D

179 FsEAN128[1] 0 2D

182

CipherLab 8600 BASIC Programming Part I

181 1: Enable Mobile Display

0: Disable

0 2D

182 2: Two Times Read Redundancy

1: One Time Read Redundancy

0: No Read Redundancy

0 2D

183 1: Enable GS1 formatting for GS1 DataBar Ominidirectional

0: Disable GS1 formatting for GS1 DataBar Ominidirectional

0 2D

184 1: Enable GS1 formatting for GS1 DataBar Limited

0: Disable GS1 formatting for GS1 DataBar Limited

0 2D

185 1: Enable GS1 formatting for GS1 DataBar Expanded

0: Disable GS1 formatting for GS1 DataBar Expanded

0 2D

186 1: Enable GS1 formatting for Composite CC-A/B

0: Disable GS1 formatting for Composite CC-A/B

0 2D

187 1: Enable GS1 formatting for Composite CC-C

0: Disable GS1 formatting for Composite CC-C

0 2D

 183

Each of the scan engines can decode a number of barcode symbologies. This appendix
describes the associated symbology parameters accordingly.

IN THIS CHAPTER

CCD or Laser Scan Engine ... 183

2D Scan Engine – 1D Symbologies 196
2D Scan Engine – 2D Symbologies 209

CCD OR LASER SCAN ENGINE

CODABAR

No. (N1%) Values (N2%) & Description Default Scan Engine

7 1: Enable Codabar (NW7)

0: Disable Codabar (NW7)

1 CCD, Laser

37 Select Codabar Start/Stop Character

0: abcd/abcd

1: abcd/tn*e

2: ABCD/ABCD

3: ABCD/TN*E

0 CCD, Laser

38 1: Transmit Codabar Start/Stop Character

0: DO NOT transmit Codabar Start/Stop Character

0 CCD, Laser

315 1: Skip checking Codabar quiet zone

0: Check Codabar quiet zone

0 CCD, Laser

Select Start/Stop Character

Select no start/stop characters, or one of the four different start/stop character pairs to be
included in the data being transmitted.

 abcd/abcd

 abcd/tn*e

 ABCD/ABCD

 ABCD/TN*E,

Transmit Start/Stop Character

Decide whether or not to include the start/stop characters in the data being transmitted.

Appendix II
SYMBOLOGY PARAMETERS

184

CipherLab 8600 BASIC Programming Part I

CODE 2 OF 5 FAMILY

INDUSTRIAL 25

No. (N1%) Values (N2%) & Description Default Scan Engine

4 1: Enable Industrial 25

0: Disable Industrial 25

1 CCD, Laser

30 1: Verify Industrial 25 Check Digit

0: DO NOT verify Industrial 25 Check Digit

0 CCD, Laser

31 1: Transmit Industrial 25 Check Digit

0: DO NOT transmit Industrial 25 Check Digit

1 CCD, Laser

35 Select Industrial 25 Start/Stop Pattern

0: Use Industrial 25 Start/Stop Pattern

1: Use Interleaved 25 Start/Stop Pattern

2: Use Matrix 25 Start/Stop Pattern

0 CCD, Laser

58 1: Industrial 25 Code Length Limitation in Max/Min Length
Format

0: Industrial 25 Code Length Limitation in Fixed Length
Format

1 CCD, Laser

59 Industrial 25 Max Code Length / Fixed Length 1 Max. 127 CCD, Laser

60 Industrial 25 Min Code Length / Fixed Length 2 Min. 4 CCD, Laser

Verify Check Digit

Decide whether or not to perform check digit verification when decoding barcodes.

 If true and the check digit found incorrect, the barcode will not be accepted.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Select Start/Stop Pattern

Select a suitable Start/Stop pattern for reading a specific variant of 2 of 5 symbology.

 For example, flight tickets actually use an Industrial 2 of 5 barcode but with Interleaved 2 of 5
start/stop pattern. In order to read this barcode, the start/stop pattern selection parameter of
Industrial 2 of 5 should set to “Interleaved 25”.

Length Qualification

Because of the weak structure of the 2 of 5 symbologies, it is possible to make a “short scan”
error. To prevent the “short scan” error, define the “Length Qualification” settings to ensure that
the correct barcode is read by qualifying the allowable code length.

 If “Fixed Length” is selected, up to 2 fixed lengths can be specified.

 If “Max/Min Length” is selected, the maximum length and the minimum length must be
specified. It only accepts those barcodes with lengths that fall between max/min lengths
specified.

 185

 Appendix II Symbology Parameters

INTERLEAVED 25

Refer to Industrial 25.

No. (N1%) Values (N2%) & Description Default Scan Engine

5 1: Enable Interleaved 25

0: Disable Interleaved 25

1 CCD, Laser

28 1: Verify Interleaved 25 Check Digit

0: DO NOT verify Interleaved 25 Check Digit

0 CCD, Laser

29 1: Transmit Interleaved 25 Check Digit

0: DO NOT transmit Interleaved 25 Check Digit

1 CCD, Laser

34 Select Interleaved 25 Start/Stop Pattern

0: Use Industrial 25 Start/Stop Pattern

1: Use Interleaved 25 Start/Stop Pattern

2: Use Matrix 25 Start/Stop Pattern

1 CCD, Laser

61 1: Interleaved 25 Code Length Limitation in Max/Min Length
Format

0: Interleaved 25 Code Length Limitation in Fixed Length
Format

1 CCD, Laser

62 Interleaved 25 Max Code Length / Fixed Length 1 Max. 127 CCD, Laser

63 Interleaved 25 Min Code Length / Fixed Length 2 Min. 4 CCD, Laser

MATRIX 25

Refer to Industrial 25.

No. (N1%) Values (N2%) & Description Default Scan Engine

6 1: Enable Matrix 25

0: Disable Matrix 25

0 CCD, Laser

32 1: Verify Matrix 25 Check Digit

0: DO NOT verify Matrix 25 Check Digit

0 CCD, Laser

33 1: Transmit Matrix 25 Check Digit

0: DO NOT transmit Matrix 25 Check Digit

1 CCD, Laser

36 Select Matrix 25 Start/Stop Pattern

0: Use Industrial 25 Start/Stop Pattern

1: Use Interleaved 25 Start/Stop Pattern

2: Use Matrix 25 Start/Stop Pattern

2 CCD, Laser

64 1: Matrix 25 Code Length Limitation in Max/Min Length
Format

0: Matrix 25 Code Length Limitation in Fixed Length Format

1 CCD, Laser

186

CipherLab 8600 BASIC Programming Part I

65 Matrix 25 Max Code Length / Fixed Length 1 Max. 127 CCD, Laser

66 Matrix 25 Min Code Length / Fixed Length 2 Min. 4 CCD, Laser

COOP 25

No. (N1%) Values (N2%) & Description Default Scan Engine

21 1: Enable Coop 25

0: Disable Coop 25

0 CCD, Laser

171 1: Verify Coop 25 Check Digit

0: DO NOT verify Coop 25 Check Digit

0 CCD, Laser

172 1: Transmit Coop 25 Check Digit

0: DO NOT transmit Coop 25 Check Digit

1 CCD, Laser

Verify Check Digit

Decide whether or not to perform check digit verification when decoding barcodes.

 If true and the check digit found incorrect, the barcode will not be accepted.

Note: “Verify Check Digit” must be enabled so that the check digit can be left out when it
is preferred not to transmit the check digit.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

CODE 39

No. (N1%) Values (N2%) & Description Default Scan Engine

1 1: Enable Code 39

0: Disable Code 39

1 CCD, Laser

22 1: Transmit Code 39 Start/Stop Character

0: DO NOT transmit Code 39 Start/Stop Character

0 CCD, Laser

23 1: Verify Code 39 Check Digit

0: DO NOT verify Code 39 Check Digit

0 CCD, Laser

24 1: Transmit Code 39 Check Digit

0: DO NOT transmit Code 39 Check Digit

1 CCD, Laser

25 1: Full ASCII Code 39

0: Standard Code 39

0 CCD, Laser

173 1: Code 39 security normal

0: Code 39 security high

0 CCD, Laser

313 1: Skip checking Code 39 quiet zone

0: Check Code 39 quiet zone

0 CCD, Laser

 187

 Appendix II Symbology Parameters

Transmit Start/Stop Character

Decide whether or not to include the start/stop characters in the data being transmitted.

Verify Check Digit

Decide whether or not to perform check digit verification when decoding barcodes.

 If true and the check digit found incorrect, the barcode will not be accepted.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Code 39 Full ASCII

Decide whether or not to support Code 39 Full ASCII that includes all the alphanumeric and
special characters.

CODE 93

No. (N1%) Values (N2%) & Description Default Scan Engine

8 1: Enable Code 93

0: Disable Code 93

1 CCD, Laser

317 1: Skip checking Code 93 quiet zone

0: Check Code 93 quiet zone

0 CCD, Laser

CODE 128/EAN-128/ISBT 128

No. (N1%) Values (N2%) & Description Default Scan Engine

9 1 : Enable Code 128 & EAN-128

0 : Disable Code 128 & EAN-128

1 CCD, Laser

150 #9 for Code 128 & EAN-128 is required to be 1.

0: Decode Code 128 & EAN-128

 (for compatibility with old firmware version)

1: Decode EAN- 128 only

2: Decode Code 128 only

3: Decode Code 128 & EAN-128

0 CCD, Laser

151 #9 for Code 128 & EAN-128 is required to be 1.

1: Strip EAN-128 Code ID

0: DO NOT strip EAN-128 Code ID

 (for compatibility with old firmware version)

0 CCD, Laser

152 1: Enable ISBT 128

0: Disable ISBT 128

1 CCD, Laser

188

CipherLab 8600 BASIC Programming Part I

174 Enable GS1 formatting for EAN-128

1: Enable

0: Disable

0 CCD, Laser

312 1: Skip checking Code 128 quiet zone

0: Check Code 128 quiet zone

0 CCD, Laser

ITALIAN/FRENCH PHARMACODE

No. (N1%) Values (N2%) & Description Default Scan Engine

2 1: Enable Italian Pharmacode

0: Disable Italian Pharmacode

0 CCD, Laser

3 1: Enable CIP 39 (French Pharmacode)

0: Disable CIP 39

0 CCD, Laser

26 1: Transmit Italian Pharmacode Check Digit

0: DO NOT transmit Italian Pharmacode Check Digit

0 CCD, Laser

27 1: Transmit CIP 39 Check Digit

0: DO NOT transmit CIP 39 Check Digit

0 CCD, Laser

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Note: Share the Transmit Start/Stop Character setting with Code 39.

MSI

No. (N1%) Values (N2%) & Description Default Scan Engine

19 1: Enable MSI

0: Disable MSI

0 CCD, Laser

39 MSI Check Digit Verification

0: Single Modulo 10

1: Double Modulo 10

2: Modulo 11 and Modulo 10

2 CCD, Laser

40 MSI Check Digit Transmission

0: Last check digit is NOT transmitted

1: Both check digits are transmitted

2: Both check digits are NOT transmitted

1 CCD, Laser

67 1: MSI 25 Code Length Limitation in Max/Min Length Format

0: MSI 25 Code Length Limitation in Fixed Length Format

1 CCD, Laser

 189

 Appendix II Symbology Parameters

68 MSI Max Code Length / Fixed Length 1 Max. 127 CCD, Laser

69 MSI Min Code Length / Fixed Length 2 Min. 4 CCD, Laser

Verify Check Digit

Select one of the three calculations to perform check digit verification when decoding barcodes.

 If true and the check digit found incorrect, the barcode will not be accepted.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Length Qualification

Because of the weak structure of the symbology, it is possible to make a “short scan” error. To
prevent the “short scan” error, define the “Length Qualification” settings to ensure that the correct
barcode is read by qualifying the allowable code length.

 If “Fixed Length” is selected, up to 2 fixed lengths can be specified.

 If “Max/Min Length” is selected, the maximum length and the minimum length must be
specified. It only accepts those barcodes with lengths that fall between max/min lengths
specified.

NEGATIVE BARCODE

No. (N1%) Values (N2%) & Description Default Scan Engine

55 1: Enable Negative Barcode

0: Disable Negative Barcode

1 CCD, Laser

PLESSEY

No. (N1%) Values (N2%) & Description Default Scan Engine

20 1: Enable Plessey

0: Disable Plessey

0 CCD, Laser

41 1: Transmit Plessey Check Digits

0: DO NOT transmit Plessey Check Digits

1 CCD, Laser

42 1: Convert Standard Plessey to UK Plessey

0: No conversion

1 CCD, Laser

316 1: Skip checking Plessey quiet zone

0: Check Plessey quiet zone

0 CCD, Laser

Transmit Check Digits

Decide whether or not to include the two check digits in the data being transmitted.

Convert to UK Plessey

Decide whether or not to change each occurrence of the character ‘A’ to character ‘X’ in the
decoded data.

190

CipherLab 8600 BASIC Programming Part I

GS1 DATABAR (RSS) FAMILY

No. (N1%) Values (N2%) & Description Default Scan Engine

74 1: Enable GS1 DataBar Limited

0: Disable GS1 DataBar Limited

0 CCD, Laser

75 Reserved --- ---

76 1: Enable GS1 DataBar Omnidirectional & GS1 DataBar
Expanded

0: Disable GS1 DataBar Omnidirectional & GS1 DataBar
Expanded

0 CCD, Laser

77 1: Transmit GS1 DataBar Omnidirectional Code ID

0: DO NOT transmit GS1 DataBar Omnidirectional Code ID

1 CCD, Laser

78 1: Transmit GS1 DataBar Omnidirectional Application ID

0: DO NOT transmit GS1 DataBar Omnidirectional
Application ID

1 CCD, Laser

79 1: Transmit GS1 DataBar Omnidirectional Check Digit

0: DO NOT transmit GS1 DataBar Omnidirectional Check
Digit

1 CCD, Laser

80 1: Transmit GS1 DataBar Limited Code ID

0: DO NOT transmit GS1 DataBar Limited Code ID

1 CCD, Laser

81 1: Transmit GS1 DataBar Limited Application ID

0: DO NOT transmit GS1 DataBar Limited Application ID

1 CCD, Laser

82 1: Transmit GS1 DataBar Limited Check Digit

0: DO NOT transmit GS1 DataBar Limited Check Digit

1 CCD, Laser

83 1: Transmit GS1 DataBar Expanded Code ID

0: DO NOT transmit GS1 DataBar Expanded Code ID

1 CCD, Laser

175 Enable GS1 formatting for GS1 DataBar Family

1: Enable

0: Disable

0 CCD, Laser

Transmit Code ID

Decide whether or not to include the Code ID (“]e0”) in the data being transmitted.

Transmit Application ID

Decide whether or not to include the Application ID (“01”) in the data being transmitted.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

 191

 Appendix II Symbology Parameters

TELEPEN

No. (N1%) Values (N2%) & Description Default Scan Engine

84 1: Enable original Telepen (= Numeric mode)

0: Disable original Telepen (= ASCII mode)

0 CCD, Laser

85 1: Enable Telepen

0: Disable Telepen

0 CCD, Laser

Original Telepen (Numeric)

Decide whether or not to support Telepen in full ASCII code. By default, it supports ASCII mode.

 AIM Telepen (Full ASCII) includes all the alphanumeric and special characters.

UPC/EAN FAMILIES

EAN-8

No. (N1%) Values (N2%) & Description Default Scan Engine

13 1: Enable EAN-8

0: Disable EAN-8

1 CCD, Laser

14 1: Enable EAN-8 Addon 2

0: Disable EAN-8 Addon 2

0 CCD, Laser

15 1: Enable EAN-8 Addon 5

0: Disable EAN-8 Addon 5

0 CCD, Laser

49 1: Transmit EAN-8 Check Digit

0: DO NOT transmit EAN8 Check Digit

1 CCD, Laser

53 1: Convert EAN-8 to EAN-13

0: No conversion

0 CCD, Laser

54 Convert EAN8 to EAN13 Format

1: GTIN-13

0: Default

0 CCD, Laser

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Convert EAN-8 to EAN-13

Decide whether or not to expand the read EAN-8 barcode into EAN-13. If true, the next
processing will follow the parameters configured for EAN-13.

EAN-13

192

CipherLab 8600 BASIC Programming Part I

No. (N1%) Values (N2%) & Description Default Scan Engine

16 1: Enable EAN-13 & UPC-A

0: Disable EAN-13 & UPC-A

1 CCD, Laser

17 1: Enable EAN-13 & UPC-A Addon 2

0: Disable EAN-13 & UPC-A Addon 2

0 CCD, Laser

18 1: Enable EAN-13 & UPC-A Addon 5

0: Disable EAN-13 & UPC-A Addon 5

0 CCD, Laser

45 1: Enable ISBN Conversion

0: No conversion

0 CCD, Laser

46 1: Enable ISSN Conversion

0: No conversion

0 CCD, Laser

50 1: Transmit EAN-13 Check Digit

0: DO NOT transmit EAN13 Check Digit

1 CCD, Laser

Convert EAN-13 to ISBN

Decide whether or not to convert the EAN-13 barcode, starting with 978 and 979, to ISBN.

Convert EAN-13 to ISSN

Decide whether or not to convert the EAN-13 barcode, starting with 977 to ISSN.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

EAN-13 ADDON MODE

No. (N1%) Values (N2%) & Description Default Scan Engine

300 1: Enable EAN-13 Addon Mode 414/419/434/439

0: Disable EAN-13 Addon Mode 414/419/434/439

0 CCD, Laser

301 1: Enable EAN-13 Addon Mode 378/379

0: Disable EAN-13 Addon Mode 378/379

0 CCD, Laser

302 1: Enable EAN-13 Addon Mode 977

0: Disable EAN-13 Addon Mode 977

0 CCD, Laser

303 1: Enable EAN-13 Addon Mode 978

0: Disable EAN-13 Addon Mode 978

0 CCD, Laser

304 1: Enable EAN-13 Addon Mode 979

0: Disable EAN-13 Addon Mode 979

0 CCD, Laser

305 1: Enable EAN-13 Addon Mode 491

0: Disable EAN-13 Addon Mode 491

0 CCD, Laser

 193

 Appendix II Symbology Parameters

306 1: Enable EAN-13 Addon Mode 529

0: Disable EAN-13 Addon Mode 529

0 CCD, Laser

EAN-13 Addon Mode 414/419/434/439

When enabled, the EAN-13 barcode, starting with 414/419/434/439, is supposed to come with its
addons. Otherwise, the reading process fails.

EAN-13 Addon Mode 378/379

When enabled, the EAN-13 barcode, starting with 378/379, is supposed to come with its addons.
Otherwise, the reading process fails.

EAN-13 Addon Mode 977

When enabled, the EAN-13 barcode, starting with 977, is supposed to come with its addons.
Otherwise, the reading process fails.

EAN-13 Addon Mode 978

When enabled, the EAN-13 barcode, starting with 978, is supposed to come with its addons.
Otherwise, the reading process fails.

EAN-13 Addon Mode 979

When enabled, the EAN-13 barcode, starting with 979, is supposed to come with its addons.
Otherwise, the reading process fails.

EAN-13 Addon Mode 491

When enabled, the EAN-13 barcode, starting with 491, is supposed to come with its addons.
Otherwise, the reading process fails.

EAN-13 Addon Mode 529

When enabled, the EAN-13 barcode, starting with 529, is supposed to come with its addons.
Otherwise, the reading process fails.

GTIN

No. (N1%) Values (N2%) & Description Default Scan Engine

87 1: Enable GTIN

0: Disable GTIN

0 CCD, Laser

UPC-A

No. (N1%) Values (N2%) & Description Default Scan Engine

44 1: Convert UPC-A to EAN-13

0: No conversion

1 CCD, Laser

48 1: Transmit UPC-A Check Digit

0: DO NOT transmit UPC-A Check Digit

1 CCD, Laser

194

CipherLab 8600 BASIC Programming Part I

52 1: Transmit UPC-A System Number

0: DO NOT transmit UPC-A System Number

1 CCD, Laser

Convert UPC-A to EAN-13

Decide whether or not to expand the read UPC-A barcode into EAN-13. If true, the next
processing will follow the parameters configured for EAN-13.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Transmit System Number

Decide whether or not to include the system number in the data being transmitted.

Note: UPC-A is to be enabled together with EAN-13, therefore, check associated EAN-13
settings first.

UPC-E

No. (N1%) Values (N2%) & Description Default Scan Engine

10 1: Enable UPC-E

0: Disable UPC-E

1 CCD, Laser

11 1: Enable UPC-E Addon 2

0: Disable UPC-E Addon 2

0 CCD, Laser

12 1: Enable UPC-E Addon 5

0: Disable UPC-E Addon 5

0 CCD, Laser

43 1: Convert UPC-E to UPC-A

0: No conversion

0 CCD, Laser

47 1: Transmit UPC-E Check Digit

0: DO NOT transmit UPC-E Check Digit

1 CCD, Laser

51 1: Transmit UPC-E System Number

0: DO NOT transmit UPC-E System Number

0 CCD, Laser

86 1: Enable UPC-E1 & UPC-E0

0: Enable UPC-E0 only

0 CCD, Laser

148 1: Enable UPC-E Triple Check

0: Disable UPC-E Triple Check

0 CCD, Laser

Convert UPC-E to UPC-A

Decide whether or not to expand the read UPC-E barcode into UPC-A. If true, the next processing
will follow the parameters configured for UPC-A.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

 195

 Appendix II Symbology Parameters

Transmit System Number

Decide whether or not to include the system number in the data being transmitted.

UPC-E Triple Check

Decide whether to apply a triple check to the UPC-E barcode. If true, the correct rate will be
improved; however, it may cause difficulties in reading some non-standard barcodes.

 This is helpful when the barcode is defaced and requires more attempts to check it.

ADDON SECURITY FOR UPC/EAN

No. (N1%) Values (N2%) & Description Default Scan Engine

308 Addon security for UPC/EAN barcodes

Level: 0 ~ 30

0 CCD, Laser

Addon Security for UPC/EAN

The scanner is capable of decoding a mix of UPC/EAN barcodes with and without addons. The read
redundancy (level) ranging from 0 to 30 allows changing the number of times to decode a
UPC/EAN barcode before transmission.

UPC/EAN SECURITY

No. (N1%) Values (N2%) & Description Default Scan Engine

190 1: UPC/EAN Security High

0: UPC/EAN Security Normal

0 CCD, Laser

UPC/EAN Security

High security ensures that the scanner read a UPC/EAN barcode correctly. By contrast, normal
security will enhance reading ability of the scanner.

UPC/EAN QUIET ZONE

No. (N1%) Values (N2%) & Description Default Scan Engine

314 1: Skip checking UPC/EAN quiet zone

0: Check Code UPC/EAN quiet zone

0 CCD, Laser

Check Quiet Zone

Decide whether or not to check the UPC/EAN quiet zone.

196

CipherLab 8600 BASIC Programming Part I

2D SCAN ENGINE – 1D SYMBOLOGIES

The 1D symbologies supported for 2D scan engine are as follows:

CODABAR

No. (N1%) Values (N2%) & Description Default Scan Engine

7 1: Enable Codabar (NW7)

0: Disable Codabar (NW7)

1 2D

38 1: Transmit Codabar Start/Stop Character

0: DO NOT transmit Codabar Start/Stop Character

0 2D

122 1: Codabar Length Limitation in Max/Min Length Format

0: Codabar Length Limitation in Fixed Length Format

1 2D

123 Codabar Max Code Length / Fixed Length1 Max. 55 2D

124 Codabar Min Code Length / Fixed Length2
NoteLength1 must be greater than Length2.

Min. 4 2D

Transmit Start/Stop Character

Decide whether or not to include the start/stop characters in the data being transmitted.

Length Qualification

The barcode can be qualified by “Fixed Length” or “Max/Min Length”. The length of a barcode
refers to the number of characters (= human readable characters), including check digit(s) it
contains.

 If “Fixed Length” is selected, up to 2 fixed lengths can be specified. With Fixed Length Format
selected, Length1 must be greater than Length2. Otherwise, the format will be converted to
Max/Min Length Format, and Length1 becomes Min Length while Length2 becomes Max
Length.
(1) Setting Length1 to a nonzero value and Length2 to 0 will only accept barcodes whose
length equals Length1.
(2) Setting both Length1 and Length2 to nonzero values will accept barcodes whose length
equal either Length1 or Length2. Note Length1 must be greater than Length2.

 If “Max/Min Length” is selected, the maximum length and the minimum length must be
specified. It only accepts those barcodes with lengths that fall between max/min lengths
specified. Max Code Length must be greater than Min Code Length.

 If both Length1 and Length2 are set to zero, barcodes of any length will be accepted
regardless of “Fixed Length” or “Max/Min Length”.

 Tips:
To accept barcodes of any length, set both Length1 and Length2 to zero.
To accept barcodes within specified range, set Length limitation in Max/Min Length Format;
Max Code Length must be greater than Min Code Length.
To accept barcodes for one fixed length, set Length limitation in Fixed Length Format and
specify Lengthe1 to a nonzero value and Length2 to 0.
To accept barcodes for either of two fixed lengths, set Length limitation in Fixed Length
Format and specify both Length1 and Length2 values; Length1 must be greater than Length2.

 197

 Appendix II Symbology Parameters

CODE 2 OF 5

INDUSTRIAL 25 (DISCRETE 25)

No. (N1%) Values (N2%) & Description Default Scan Engine

98 1: Enable Industrial 25 (Discrete 25)

0: Disable Industrial 25 (Discrete 25)

1 2D

119 1: Industrial 25 (Discrete 25) Length Limitation in Max/Min
Length Format

0: Industrial 25 (Discrete 25) Length Limitation in Fixed
Length Format

1 2D

120 Industrial 25 (Discrete 25) Max Code Length / Fixed Length1 Max. 55 2D

121 Industrial 25 (Discrete 25) Min Code Length / Fixed Length2
NoteLength1 must be greater than Length2.

Min. 4 2D

Length Qualification

Because of the weak structure of the 2 of 5 symbologies, it is possible to make a “short scan”
error. To prevent the “short scan” error, define the “Length Qualification” settings to ensure that
the correct barcode is read by qualifying the allowable code length. Refer to Codabar.

198

CipherLab 8600 BASIC Programming Part I

INTERLEAVED 25

No. (N1%) Values (N2%) & Description Default Scan Engine

5 1: Enable Interleaved 25

0: Disable Interleaved 25

1 2D

29 1: Transmit Interleaved 25 Check Digit

0: DO NOT transmit Interleaved 25 Check Digit

0 2D

61 1: Interleaved 25 Code Length Limitation in Max/Min Length
Format

0: Interleaved 25 Code Length Limitation in Fixed Length
Format

1 2D

62 Interleaved 25 Max Code Length / Fixed Length 1 Max. 55 2D

63 Interleaved 25 Min Code Length / Fixed Length 2
NoteLength1 must be greater than Length2.

Min. 4 2D

140 0: DO NOT verify Interleaved 25 Check Digit

1: Verify Interleaved 25 USS Check Digit

2: Verify Interleaved 25 OPCC Check Digit

0 2D

144 1: Convert Interleaved 25 to EAN-13

0: No conversion

0 2D

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Length Qualification

Because of the weak structure of the 2 of 5 symbologies, it is possible to make a “short scan”
error. To prevent the “short scan” error, define the “Length Qualification” settings to ensure that
the correct barcode is read by qualifying the allowable code length. Refer to Codabar.

Verify Check Digit

Decide whether or not to perform check digit verification when decoding barcodes.

 If true and the check digit found incorrect, the barcode will not be accepted.

Convert to EAN-13

Decide whether or not to convert a 14-character Interleaved 25 barcode into EAN-13. If true, the
next processing will follow the parameters configured for EAN-13.

 Interleaved 25 barcode must have a leading zero and a valid EAN-13 check digit.

Note: “Convert Interleaved 25 to EAN

 199

 Appendix II Symbology Parameters

CHINESE 25

No. (N1%) Values (N2%) & Description Default Scan Engine

169 1: Enable Chinese 25

0: Disable Chinese 25

0 2D

MATRIX 25

No. (N1%) Values (N2%) & Description Default Scan Engine

6 1: Enable Matrix 25

0: Disable Matrix 25

0 2D

32 1: Verify Matrix 25 Check Digit

0: DO NOT verify Matrix 25 Check Digit

0 2D

33 1: Transmit Matrix 25 Check Digit

0: DO NOT transmit Matrix 25 Check Digit

0 2D

64 1: Matrix 25 Code Length Limitation in Max/Min Length
Format

0: Matrix 25 Code Length Limitation in Fixed Length Format

1 2D

65 Matrix 25 Max Code Length / Fixed Length 1 Max. 55 2D

66 Matrix 25 Min Code Length / Fixed Length 2
NoteLength1 must be greater than Length2.

Min. 4 2D

200

CipherLab 8600 BASIC Programming Part I

CODE 39

No. (N1%) Values (N2%) & Description Default Scan Engine

1 1: Enable Code 39

0: Disable Code 39

1 2D

2 1: Enable Code 32 (Italian Pharmacode)

0: Disable Code 32

0 2D

23 1: Verify Code 39 Check Digit

0: DO NOT verify Code 39 Check Digit

0 2D

24 1: Transmit Code 39 Check Digit

0: DO NOT transmit Code 39 Check Digit

0 2D

25 1: Full ASCII Code 39

0: Standard Code 39

0 2D

88 1: Code 39 Length Limitation in Max/Min Length Format

0: Code 39 Length Limitation in Fixed Length Format

1 2D

89 Code 39 Max Code Length / Fixed Length1 Max. 55 2D

90 Code 39 Min Code Length / Fixed Length2
NoteLength1 must be greater than Length2.

Min. 4 2D

100 1: Enable Trioptic Code 39

0: Disable Trioptic Code 39

0 2D

Verify Check Digit

Decide whether or not to perform check digit verification when decoding barcodes.

 If true and the check digit found incorrect, the barcode will not be accepted.

Note: “Verify Check Digit” must be enabled so that the check digit can be left out when it
is preferred not to transmit the check digit.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Code 39 Full ASCII

Decide whether or not to support Code 39 Full ASCII that includes all the alphanumeric and
special characters.

Length Qualification

Refer to Codabar.

 201

 Appendix II Symbology Parameters

CODE 93

No. (N1%) Values (N2%) & Description Default Scan Engine

8 1: Enable Code 93

0: Disable Code 93

1 2D

113 1: Code 93 Length Limitation in Max/Min Length Format

0: Code 93 Length Limitation in Fixed Length Format

1 2D

114 Code 93 Max Code Length / Fixed Length1 Max. 55 2D

115 Code 93 Min Code Length / Fixed Length2
NoteLength1 must be greater than Length2.

Min. 4 2D

Length Qualification

Refer to Codabar.

CODE 128

CODE 128

No. (N1%) Values (N2%) & Description Default Scan Engine

9 1: Enable Code 128

0: Disable Code 128

1 2D

ISBT 128

No. (N1%) Values (N2%) & Description Default Scan Engine

99 1: Enable ISBT 128

0: Disable ISBT 128

1 2D

Note: ISBT 128 is a variant of Code 128 used in the blood bank industry.

UCC/EAN-128

No. (N1%) Values (N2%) & Description Default Scan Engine

101 1: Enable UCC/EAN-128

0: Disable UCC/EAN-128

1 2D

174 1: Enable GS1 formatting for EAN-128

0: Disable GS1 formatting for EAN-128

0 2D

202

CipherLab 8600 BASIC Programming Part I

MSI

No. (N1%) Values (N2%) & Description Default Scan Engine

19 1: Enable MSI

0: Disable MSI

0 2D

39 MSI Check Digit Verification

0: Single Modulo 10

1: Double Modulo 10

2: Modulo 11 and Modulo 10

1 2D

40 MSI Check Digit Transmission

0: Last Check Digit is NOT transmitted

1: Both Check Digits are transmitted

2: Both Check Digits are NOT transmitted

0 2D

67 1: MSI 25 Code Length Limitation in Max/Min Length Format

0: MSI 25 Code Length Limitation in Fixed Length Format

1 2D

68 MSI Max Code Length / Fixed Length 1 Max. 55 2D

69 MSI Min Code Length / Fixed Length 2
NoteLength1 must be greater than Length2.

Min. 4 2D

Verify Check Digit

Select one of the three calculations to perform check digit verification when decoding barcodes.

 If true and the check digit found incorrect, the barcode will not be accepted.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Length Qualification

Because of the weak structure of the symbology, it is possible to make a “short scan” error. To
prevent the “short scan” error, define the “Length Qualification” settings to ensure that the correct
barcode is read by qualifying the allowable code length. Refer to Codabar.

 203

 Appendix II Symbology Parameters

GS1 DATABAR (RSS) FAMILY

No. (N1%) Values (N2%) & Description Default Scan Engine

102 1: Convert GS1 DataBar to UPC/EAN

0: No conversion

0 2D

103 1: Enable GS1 DataBar Expanded

0: Disable GS1 DataBar Expanded

1 2D

104 1: Enable GS1 DataBar Limited

0: Disable GS1 DataBar Limited

1 2D

105 1: Enable GS1 DataBar Omnidirectional

0: Disable GS1 DataBar Omnidirectional

1 2D

183 1: Enable GS1 formatting for GS1 DataBar Omnidirectional

0: Disable GS1 formatting for GS1 DataBar Omnidirectional

0 2D

184 1: Enable GS1 formatting for GS1 DataBar Limited

0: Disable GS1 formatting for GS1 DataBar Limited

0 2D

185 1: Enable GS1 formatting for GS1 DataBar Expanded

0: Disable GS1 formatting for GS1 DataBar Expanded

0 2D

Convert GS1 DataBar to UPC/EAN

Decide whether or not to convert the GS1 DataBar barcodes to UPC/EAN. If true,

(1) The leading “010” will be stripped from these barcodes and a “0” will be encoded as the first
digit; this will convert GS1 DataBar barcodes to EAN-13.

(2) For barcodes beginning with two or more zeros but not six zeros, this option will strip the
leading “0010” and report the barcode as UPC-A. The UPC-A Preamble setting that transmits the
system character and country code applies to such converted barcodes. Note that neither the
system character nor the check digit can be stripped.

 This only applies to GS1 DataBar Omnidirectional and GS1 DataBar Limited barcodes not
decoded as part of a Composite barcode.

204

CipherLab 8600 BASIC Programming Part I

UPC/EAN FAMILIES

The UPC/EAN families include No Addon, Addon 2, and Addon 5 for the following
symbologies:

 UPC-E0
 UPC-E1
 UPC-A
 EAN-8
 EAN-13
 Bookland EAN (ISBN)

For any member belonging to the UPC/EAN families, Index #139 is used to decide the
joint configuration of No Addon, Addon 2, and Addon 5. Other parameters are listed
below.

No. (N1%) Values (N2%) & Description Default Scan Engine

43 1: Convert UPC-E0 to UPC-A

0: No conversion

0 2D

44 1: Convert UPC-A to EAN-13

0: No conversion

0 2D

47 1: Transmit UPC-E0 Check Digit

0: DO NOT transmit UPC-E0 Check Digit

1 2D

48 1: Transmit UPC-A Check Digit

0: DO NOT transmit UPC-A Check Digit

1 2D

51 1: Transmit UPC-E0 System Number

0: DO NOT transmit UPC-E0 System Number

1 2D

52 1: Transmit UPC-A System Number

0: DO NOT transmit UPC-A System Number

1 2D

53 1: Convert EAN-8 to EAN-13

0: No conversion

1 2D

91 1: Transmit UPC-E1 System Number

0: DO NOT transmit UPC-E1 System Number

0 2D

92 1: Transmit UPC-E1 Check Digit

0: DO NOT transmit UPC-E1 Check Digit

0 2D

95 1: Convert UPC-E1 to UPC-A

0: No conversion

0 2D

141 1: Enable UPC-A System Number & Country Code

0: Disable UPC-A System Number & Country Code

1 2D

142 1: Enable UPC-E0 System Number & Country Code

0: Disable UPC-E0 System Number & Country Code

1 2D

 205

 Appendix II Symbology Parameters

143 1: Enable UPC-E1 System Number & Country Code

0: Disable UPC-E1 System Number & Country Code

1 2D

Convert UPC-E0/UPC-E1 to UPC-A

Decide whether or not to expand the read UPC-E0/UPC-E1 barcode into UPC-A. If true, the next
processing will follow the parameters configured for UPC-A.

Convert EAN-8 to EAN-13

Decide whether or not to expand the read EAN-8 barcode into EAN-13.

If true, the next processing will follow the parameters configured for EAN-13.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Transmit System Number

Decide whether or not to include the system number will be included in the data being
transmitted.

UPC/EAN — BOOKLAND ISBN FORMAT

No. (N1%) Values (N2%) & Description Default Scan Engine

161 UPC/EAN – Bookland ISBN Format

1: UPC/EAN – Bookland ISBN 13

0: UPC/EAN – Bookland ISBN 10

0 2D

206

CipherLab 8600 BASIC Programming Part I

UCC COUPON CODE

No. (N1%) Values (N2%) & Description Default Scan Engine

168 1: Enable Coupon Code

0: Disable Coupon Code

0 2D

JOINT CONFIGURATION

No. (N1%) Values (N2%) & Description Default Scan Engine

139 1: Enable Joint Configuration of No Addon, Addon 2 & 5 for
Any Member of UPC/EAN Families

0: Disable Joint Configuration

0 2D

 If Index #139 for joint configuration is set 1, the parameters of Table I can be
configured separately. It depends on which member of the families needs to be
enabled.

 If Index #139 for Joint Configuration is set 0, then

- When “ANY” of the indexes of Table II is set 1, only Addon 2 & 5 of the whole
UPC/EAN families is enabled. (= Disable No Addon)

- When “ALL” of the indexes of Table II are set 0, only No Addon is enabled that is
further decided by Table I.

When Results in

Index #139 Index # listed in Table
I

Index # listed in Table
II

No Addon Addon 2 & 5

= 1 = 1 N/A Enabled Enabled

= 1 = 0 N/A Disabled Disabled

= 0 N/A Any = 1 DisabledNote

(All)

EnabledNote

(All)

= 0 = 1 All = 0 Enabled DisabledNote

(All)

= 0 = 0 All = 0 Disabled DisabledNote

(All)

Note: The result marked with “All” indicates it occurs with the whole UPC/EAN families.

 207

 Appendix II Symbology Parameters

TABLE I

No. (N1%) Values (N2%) & Description Default Scan Engine

10 1: Enable UPC-E0

0: Disable UPC-E0 (depends)

1 2D

13 1: Enable EAN-8

0: Disable EAN-8 (depends)

1 2D

16 1: Enable EAN-13

0: Disable EAN-13 (depends)

1 2D

97 1: Enable Bookland EAN

 (#16 for EAN-13 is required to be 1.)

0: Disable Bookland EAN

0 2D

106 1: Enable UPC-A

0: Disable UPC-A (depends)

1 2D

108 1: Enable UPC-E1

0: Disable UPC-E1 (depends)

0 2D

Note: (1) Index #139 = 1: No Addon, Addon 2, Addon 5 of the symbology are enabled.
 (2) Index #139 = 0 (and all the indexes in Table II below must be set 0): Only No
Addon of the symbology is enabled.

TABLE II

No. (N1%) Values (N2%) & Description Default Scan Engine

11, 12 1: Enable Only Addon 2 & 5 of UPC & EAN Families

 (It requires “ANY” of the indexes to be set 1.)

0: Disable Only Addon 2 & 5 of UPC & EAN Families

 (It requires “ALL” of the indexes to be set 0.)

0 2D

14, 15

17, 18

107, 109

208

CipherLab 8600 BASIC Programming Part I

CODE 11

No. (N1%) Values (N2%) & Description Default Scan Engine

96 1: Enable Code 11

0: Disable Code 11

0 2D

116 1: Code 11 Length Limitation in Max/Min Length Format

0: Code 11 Length Limitation in Fixed Length Format

1 2D

117 Code 11 Max Code Length / Fixed Length1 Max. 55 2D

118 Code 11 Min Code Length / Fixed Length2
NoteLength1 must be greater than Length2.

Min. 4 2D

170 Code 11 Check Digit Verification

2: Two check digits

1: One check digit

0: Disable

0 2D

Length Qualification

The barcode can be qualified by “Fixed Length” or “Max/Min Length”. The length of a barcode
refers to the number of characters (= human readable characters), including check digit(s) it
contains.

 If “Fixed Length” is selected, up to 2 fixed lengths can be specified.

 If “Max/Min Length” is selected, the maximum length and the minimum length must be
specified. It only accepts those barcodes with lengths that fall between max/min lengths
specified.

Note: When it is configured to use Fixed Length format, Length1 must be greater than
Length2. Otherwise, the format will be converted to Max/Min Length Format, and
Length1 becomes Min. Length while Length2 becomes Max. Length. In either
length format, when both of the values are configured to 0, it means no limit in
length.

1D INVERSE

No. (N1%) Values (N2%) & Description Default Scan Engine

157 1D Inverse Decoder

2: Decode both regular and inverse

1: Decode inverse 1D barcode only

0: Decode regular 1D barcode only

0 2D

 209

 Appendix II Symbology Parameters

2D SCAN ENGINE – 2D SYMBOLOGIES

POSTAL CODE FAMILY

No. (N1%) Values (N2%) & Description Default Scan Engine

125 1: Transmit US Postal Check Digit

0: DO NOT transmit US Postal Check Digit

1 2D

129 1: Enable US Planet

0: Disable US Planet

1 2D

130 1: Enable US Postnet

0: Disable US Postnet

1 2D

134 1: Enable Japan Postal

0: Disable Japan Postal

1 2D

135 1: Enable Australian Postal

0: Disable Australian Postal

1 2D

136 1: Enable Dutch Postal

0: Disable Dutch Postal

1 2D

137 1: Enable UK Postal Check Digit

0: Disable UK Postal Check Digit

1 2D

138 1: Enable UK Postal

0: Disable UK Postal

1 2D

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

No. (N1%) Values (N2%) & Description Default Scan Engine

159 1: Enable USPS 4CB / One Code / Intelligent Mail

0: Disable USPS 4CB / One Code / Intelligent Mail

0 2D

160 1: Enable UPU FICS Postal

0: Disable UPU FICS Postal

0 2D

210

CipherLab 8600 BASIC Programming Part I

COMPOSITE CODES

CC-A/B/C

No. (N1%) Values (N2%) & Description Default Scan Engine

111 1: Enable Composite CC-A/B

0: Disable Composite CC-A/B

0 2D

112 1: Enable Composite CC-C

0: Disable Composite CC-C

0 2D

186 1: Enable GS1 formatting for Composite CC-A/B

0: Disable GS1 formatting for Composite CC-A/B

0 2D

187 1: Enable GS1 formatting for Composite CC-C

0: Disable GS1 formatting for Composite CC-C

0 2D

TLC-39

No. (N1%) Values (N2%) & Description Default Scan Engine

94 1: Enable TCIF Linked Code 39

0: Disable TCIF Linked Code 39

0 2D

Note: Code 39 must be enabled first!

UPC COMPOSITE

No. (N1%) Values (N2%) & Description Default Scan Engine

110 0: UPC Never Linked

1: UPC Always Linked

2: Autodiscriminate UPC Composite

1 2D

Select UPC Composite Mode

UPC barcode can be “linked” with a 2D barcode during transmission as if they were one barcode.

There are three options for these barcodes:

 211

 Appendix II Symbology Parameters

UPC Never Linked

Transmit UPC barcodes regardless of whether a 2D barcode is detected.

UPC Always Linked

Transmit UPC barcodes and the 2D portion. If the 2D portion is not detected, the UPC barcode
will not be transmitted.

 CC-A/B or CC-C must be enabled!

Auto-discriminate UPC Composites

Transmit UPC barcodes as well as the 2D portion if present.

Note: If “UPC Always Linked” is enabled, either CC-A/B or CC-C must be enabled.
Otherwise, it will not transmit even there are UPC barcodes.

UPC COMPOSITE

No. (N1%) Values (N2%) & Description Default Scan Engine

93 1 : Enable GS1-128 Emulation Mode for UCC/EAN Composite
Codes

0 : Enable GS1-128 Emulation Mode for UCC/EAN Composite
Codes

0 2D

212

CipherLab 8600 BASIC Programming Part I

MAXICODE, DATA MATRIX & QR CODE

No. (N1%) Values (N2%) & Description Default Scan Engine

126 1: Enable Maxicode

0: Disable Maxicode

1 2D

127 1: Enable Data Matrix

0: Disable Data Matrix

1 2D

128 1: Enable QR Code

0: Disable QR Code

1 2D

165 1: Enable MicroQR

0: Disable MicroQR

1 2D

166 1: Enable Aztec

0: Disable Aztec

1 2D

2D INVERSE/MIRROR

No. (N1%) Values (N2%) & Description Default Scan Engine

162 Data Matrix Inverse

2: Decode both regular and inverse

1: Decode inverse Data Matrix only

0: Decode regular Data Matrix only

0 2D

163 Data Matrix Mirror

2: Decode both mirrored and unmirrored

1: Decode mirrored Data Matrix only

0: Decode unmirrored Data Matrix only

0 2D

164 QR Code Inverse

2: Decode both regular and inverse

1: Decode inverse QR Code only

0: Decode regular QR Code only

0 2D

167 Aztec Inverse

2: Decode both regular and inverse

1: Decode inverse Aztec only

0: Decode regular Aztec only

0 2D

 213

 Appendix II Symbology Parameters

PDF417

No. (N1%) Values (N2%) & Description Default Scan Engine

131 1: Enable MicroPDF417

0: Disable MicroPDF417

1 2D

132 1: Enable PDF417

0: Disable PDF417

1 2D

146 Macro PDF Transmit / Decode Mode

0: Passthrough all symbols

1: Buffer all symbols / Transmit Macro PDF when complete

2: Transmit any symbol in set / No particular order

0 2D

147 1: Enable Macro PDF Escape Characters

0: Disable Macro PDF Escape Characters

0 2D

Macro PDF Transmit / Decode Mode

Macro PDF is a special feature for concatenating multiple PDF barcodes into one file, known as
Macro PDF417 or Macro MicroPDF417.

Decide how to handle Macro PDF decoding –

Buffer All Symbols / Transmit Macro PDF When Complete

Transmit all decoded data from an entire Macro PDF sequence only when the entire sequence is
scanned and decoded. If the decoded data exceeds the limit of 50 symbols, no transmission
because the entire sequence was not scanned!

 The transmission of the control header must be disabled.

Transmit Any Symbol in Set / No Particular Order

Transmit data from each Macro PDF symbol as decoded, regardless of the sequence.

 The transmission of the control header must be enabled.

Passthrough All Symbols

Transmit and decode all Macro PDF symbols and perform no processing. In this mode, the host
is responsible for detecting and parsing the Macro PDF sequences.

Macro PDF Escape Characters

Decide whether or not to transmit the Escape character. If true, it uses the backslash “\” as an
Escape character for systems that can process transmissions containing special data sequences.

 It will format special data according to the Global Label Identifier (GLI) protocol, which only
affects the data portion of a Macro PDF symbol transmission. The Control Header is always
sent with GLI formatting.

214

CipherLab 8600 BASIC Programming Part I

 215

This appendix describes the associated scanner parameters.

IN THIS CHAPTER

Scan Mode ... 215
Read Redundancy ... 218
Time-Out ... 218
User Preferences .. 219

SCAN MODE

Index #70 of the unsigned character array ScannerDesTbl is used to define a scan
mode that best suits the requirements of a specific application. Refer to Time-Out.

No. (N1%) Values (N2%) & Description Default Scan Engine

70 Scan Mode for Scanner Port 1

8: Aiming Mode

7: Test Mode

6: Laser Mode

5: Repeat Mode

4: Momentary Mode

3: Alternate Mode

2: Auto Power Off Mode

1: Continuous Mode

0: Auto Off Mode

Laser
Mode

CCD, Laser

70 Scan Mode for Scanner Port 1

8: Aiming Mode

7: Test Mode

3: Alternate Mode

1: Continuous Mode

0: Auto-off Mode

Any value other than the above: Laser Mode

Laser
Mode

2D

 For CCD or Laser scan engine, it supports 9 scan modes. See the comparison table
below. Index #72 is used for timeout duration, if necessary.

Appendix III
SCANNER PARAMETERS

216

CipherLab 8600 BASIC Programming Part I

The aiming dot will not go off until it times out or you press the trigger key again to
start scanning. Index #145 is used for timeout duration, if necessary.

COMPARISON TABLE

Scan Mode Start to Scan Stop Scanning

 Always Press
trigger
once

Hold
trigger

Press
trigger
twice

Release
trigger

Press
trigger
once

Barcode
being
read

Timeout

Continuous mode 

Test mode 

Repeat mode 

Momentary mode  

Alternate mode  

Aiming mode   

Laser mode    

Auto Off mode   

Auto Power Off
mode

  

Continuous Mode

Non-stop scanning

 To decode the same barcode repeatedly, move away the scan beam and target it at the
barcode for each scanning.

Test Mode

Non-stop scanning (for testing purpose)

 Capable of decoding the same barcode repeatedly.

Repeat Mode

Non-stop scanning

 Capable of re-transmitting barcode data if triggering within one second after a successful
decoding.

 Such re-transmission can be activated as many times as needed, as long as the time interval
between each triggering does not exceed one second.

Momentary Mode

Hold down the scan trigger to start with scanning.

 The scanning won't stop until you release the trigger.

Alternate Mode

Press the scan trigger to start with scanning.

 The scanning won't stop until you press the trigger again.

 217

 Appendix III Scanner Parameters

Aiming Mode

Press the scan trigger to aim at a barcode. Within one second, press the trigger again to decode
the barcode.

 The scanning won't stop until (a) a barcode is decoded, (b) the preset timeout expires, or (c)
you release the trigger.

Laser Mode

Hold down the scan trigger to start with scanning.

 The scanning won't stop until (a) a barcode is decoded, (b) the preset timeout expires, or (c)
you release the trigger.

Auto Off Mode

Press the scan trigger to start with scanning.

 The scanning won't stop until (a) a barcode is decoded, or (b) the preset timeout expires.

Auto Power Off Mode

Press the scan trigger to start with scanning.

 The scanning won't stop until the pre-set timeout expires, and, the preset timeout period
re-counts after each successful decoding.

218

CipherLab 8600 BASIC Programming Part I

READ REDUNDANCY

This parameter is used to specify the level of reading security. You will have to
compromise between reading security and decoding speed.

No. (N1%) Values (N2%) & Description Default Scan Engine

56 3: Three Times Read Redundancy for Scanner Port 1

2: Two Times Read Redundancy for Scanner Port 1

1: One Time Read Redundancy for Scanner Port 1

0: No Read Redundancy for Scanner Port 1

0 CCD, Laser

182 2: Two Times Read Redundancy

1: One Time Read Redundancy

0: No Read Redundancy

0 2D

 No Redundancy:

If “No Redundancy” is selected, one successful decoding will make the reading valid
and induce the “READER Event”.

 One/Two/Three Times:

If “Three Times” is selected, it will take a total of four consecutive successful
decodings of the same barcode to make the reading valid. The higher the reading
security is (that is, the more redundancy the user selects), the slower the reading
speed gets.

TIME-OUT

These parameters are used to limit the maximum scanning time interval for a specific
scan mode.

No. (N1%) Values (N2%) & Description Default Scan Engine

72 Scanner time-out duration in seconds for Aiming mode,
Laser mode, Auto Off mode, and Auto Power Off mode

1 ~ 255 (sec): Decode time-out

0: No time-out

3 sec. CCD, Laser

145 Scanner time-out duration in seconds for Aiming mode,
Laser mode and Auto-off mode

1 ~ 255 (sec): Decode time-out

0: No time-out (= always scanning)

3 sec. 2D

149 Aiming time-out duration for Aiming mode

1 ~ 65535 (in units of 5 milliseconds): Aiming time-out

0: No aiming

200

(= 1
sec.)

CCD, Laser;

2D

 219

 Appendix III Scanner Parameters

USER PREFERENCES

No. (N1%) Values (N2%) & Description Default Scan Engine

153 Focus Mode

2: Smart Focus

1: Near Focus

0: Far Focus

0 2D

154 1: Enable Decode Aiming Pattern

0: Disable Decode Aiming Pattern

1 2D

155 1: Enable Decode Illumination

0: Disable Decode Illumination

1 2D

156 1: Enable Picklist Mode

0: Disable Picklist Mode

0 2D

Note: Picklist mode enables the decoder to decode only barcodes aligned under the
center of the laser aiming pattern.

158 1: Reader sleeps during system suspend

0: Reader is powered off during system suspend

0 2D

Note: The reader powered off during system suspend is to save battery power; however,
the reader takes about 3 seconds to restart the power after system resumes.

181 1: Enable Mobile Display

0: Disable

0 2D

220

CipherLab 8600 BASIC Programming Part I

 221

There are some commands reserved for the host computer to read/remove data of the
transaction file, or to adjust the system time. User's BASIC program does not need to do
any processing because these tasks will be processed by the background routines of the
BASIC run-time.

Note: (1) Each reserved command is ended with a carriage return, which can be
changed by COM_DELIMITER. If any format error occurs, the mobile computer
would return “NAK”.

CLEAR

Purpose To erase data of a specified transaction file.

Syntax A$ = CLEAR

A$ = CLEAR file%

Remarks The command CLEAR will clear data of the first transaction file, which is the
default one.

“A$” is a string variable to be assigned to the result.

A$ Meaning

OK

NAK

The command is processed successfully.

Any format error occurs.

“file%” is an integer variable in the range of 1 to 6, indicating which transaction
file is to be erased.

Example CLEAR3 ' to delete data of the 3rd transaction file

Appendix IV
RESERVED HOST COMMANDS

222

CipherLab 8600 BASIC Programming Part I

READ

Purpose To read the top most record of a specified transaction file.

Syntax A$ = READ

A$ = READ file%

Remarks The command READ will read the top most record of the first transaction file,
which is the default one.

“A$” is a string variable to be assigned to the result; it may be the desired data
string if the command is successfully processed.

Otherwise, it may have one of the values as follows:

A$ Meaning

OVER

NAK

There is no data in the transaction file.

Any format error occurs.

“file%” is an integer variable in the range of 1 to 6, indicating of which
transaction file the record is to be read.

Example READ1 ' to read a record from the first transaction file

REMOVE

Purpose To delete one record from the top of a specified transaction file.

Syntax A$ = REMOVE

A$ = REMOVE file%

Remarks The command REMOVE will delete one record from the top of the first
transaction file, which is the default one.

“A$” is a string variable to be assigned to the result.

A$ Meaning

NEXT

OVER

NAK

The command is processed successfully.

There is no more data.

Any format error occurs.

“file%” is an integer variable in the range of 1 to 6, indicating of which
transaction file the record is to be deleted.

Example REMOVE2 ' to delete a record from the 2nd transaction file

TR

Purpose To get the current system time.

Syntax A$ = TR

Remarks “A$” is a string variable to be assigned to the result, which is in the form of
“yyyymmddhhnnss”.

Otherwise, it returns NAK for any format error.

Example TR

 223

 Appendix IV Reserved Host Commands

TW

Purpose To set new system time.

Syntax A$ = TWyyyymmddhhnnss

Remarks “A$” is a string variable to be assigned to the result.

A$ Meaning

OK

NAK

The command is processed successfully.

Any format error occurs.

Format of system time –

 yyyy for 4-digit year

 mm for 2-digit month

 dd for 2-digit day

 hh for 2-digit hour, in 24-hour format

 nn for 2-digit minute

 ss for 2-digit second

Example TW20050520103000 ' set system time as 2005/May 20/10:30:00

224

CipherLab 8600 BASIC Programming Part I

 225

The command START_DEBUG will write the activities happening on the system to a
specified COM port. It is very useful when user needs to monitor the system or diagnose
a problem.

When START_DEBUG is executed, the system will send a series of messages to a
specified COM port until the command STOP_DEBUG is executed. Refer to the table
below listing debugging messages.

START_DEBUG

Purpose To start the debug function.

Syntax START_DEBUG(N%, Baudrate%, Parity%, Data%, Handshake%)

Remarks
Parameters Values Remarks

N% 1 or 2 or 5 Indicates which COM port is to be set.

Baudrate%

1: 115200 bps

2: 76800 bps

3: 57600 bps

4: 38400 bps

5: 19200 bps

6: 9600 bps

7: 4800 bps

8: 2400 bps

Specifies the baud rate of the COM port.

Parity% 1: None

2: Odd

3: Even

Specifies the parity of the COM port.

Data% 1: 7 data bits

2: 8 data bits

Specifies the data bits of the COM port.

Handshake% 1: None

2: CTS/RTS

3: XON/XOFF

Specifies the method of flow control for the
COM port.

If a certain COM port has been used in the BASIC program, it is better to use
another COM port for debugging to avoid conflicts. COM port type must be
specified before using START_DEBUG.

Appendix V
DEBUGGING COMMANDS

226

CipherLab 8600 BASIC Programming Part I

Example SET_COM_TYPE(1, 1)

START_DEBUG(1, 1, 1, 2, 1)

‘ specify RS-232 for COM1

‘ use COM1 to send debug messages

‘ the COM port properties are 115200, None,
8, No handshake

STOP_DEBUG

Purpose To terminate the debug function.

Syntax STOP_DEBUG

Remarks This is the counter command of START_DEBUG.

Example STOP_DEBUG

 227

 Appendix V Debugging Commands

DEBUGGING EXAMPLE

The following are the debugging messages received when running a sample BASIC
program.

* L(7), T(0)

ADD_RECORD(1,“10001 Justin Jan
08300930113013001130150018002000”)

 * L(42), T(0)

ON_NET(316)

* L(8), T(0) * L(43), T(0)

* L(9), T(0)

ASGN(2)

 ON_ENQUIRY(128)

…

* L(10), T(0)

ASGN(3)

 *

GOTO(68)

L(68), T(0)

* L(11), T(0)

ASGN(“CipherLab 510”)

 *

*

L(69), T(0)

L(70), T(0)

* L(12), T(0)

ASGN(“510AC_100.BAS”)

 GOTO(68)

…

* L(13), T(0)

…

 * L(69), T(0)

EVENT(16)

* L(25), T(0)

ARY(1)

ASGN(“OK Good Morning!”)

…

 *

*

*

L(79), T(1)

L(80), T(1)

OFF_READER(1)

L(81), T(1)

* L(39), T(0)

SET_COM(1,1,1,2,1)

*

OFF_READER(2)

L(82), T(1)

* L(40), T(0)

OPEN_COM(1)

…

*

CLS

L(83), T(1)

HIDE_CALENDAR

* L(41), T(0)

START_NETWORK

 * L(84), T(1)

BEEP(…)

228

CipherLab 8600 BASIC Programming Part I

DEBUGGING MESSAGES

Debugging messages indicate the activities happening on the system. The common
debugging messages are listed as follows.

Message Explanation

ABS(N) Indicating the command ABS is processed.

ADD(N1%,N2%) Indicating an addition is processed.

ADD_RECORD(file%,data$) Indicating the command ADD_RECORD is processed.

ALPHA_LOCK(status%) Indicating the command ALPHA_LOCK is processed.

AND Indicating the logical operation AND is processed.

ARY(N%) Indicating an N-element array is declared.

ASC(X$) Indicating the command ASC is processed.

ASGN(A) Indicating that the value A is assigned to the variable. A could
be an integer, long integer, character, string, or any type.

AUTO_OFF(N%) Indicating the command AUTO_OFF is processed. N% is the
assigned time interval.

BACK_LIGHT_DURATION(…) Indicating the command BACK_LIGHT_DURATION is processed.

BACKLIT(Dev%, state%) Indicating the command BACKLIT is processed.

BACKUP_BATTERY Indicating the command BACKUP_BATTERY is processed.

BEEP(...) Indicating the command BEEP is processed.

BIT_OPERATOR(...) Indicating the command BIT_OPERATOR is processed.

BT_INQUIRY$ Indicating the command BT_INQUIRY$ is processed.

BT_PAIRING(addr$,type%) Indicating the command BT_PAIRING is processed.

CHR$(N%) Indicating the command CHR is processed.

CIRCLE(...) Indicating the command CIRCLE is processed.

CLOSE_COM(N%) Indicating the command CLOSE_COM is processed. N% is the
number of the COM port.

CLR_KBD Indicating the command CLR_KBD is processed.

CLR_RECT(...) Indicating the command CLR_RECT is processed.

CLS Indicating the command CLS is processed.

CODE_TYPE Indicating the command CODE_TYPE is processed.

COM_DELIMITER(N%,C%) Indicating the command COM_DELIMITER is processed.

CURSORX Indicating the command CURSOR_X is processed.

CURSORY Indicating the command CURSOR_Y is processed.

DATE$ Indicating the system date is inquired.

DATE$(X$) Indicating the system date is updated. X$ is the new system
date.

DAY_OF_WEEK Indicating the command DAY_OF_WEEK is processed.

 229

 Appendix V Debugging Commands

DEL_RECORD(file%[,index%]) Indicating the command DEL_RECORD is processed.

DEL_TRANSACTION_DATA(N%) Indicating the command DEL_TRANSACTION_DATA is processed.
N% is the number of records to be deleted.

DEL_TRANSACTION_DATA_EX(fi
le%,N%)

Indicating the command DEL_TRANSACTION_DATA_EX is
processed.

DISABLE_READER(N%) Indicating the command DISABLE READER is processed. N% is
the number of the reader port.

DIV(N1%,N2%) Indicating a division is processed.

DNS_RESOLVER(A$) Indicating the command DNS_RESOLVER is processed.

DOWNLOAD_BASIC(file%,
port%)

Indicating the command DOWNLOAD_BASIC is processed.

EMPTY_FILE(file%) Indicating the command EMPTY_FILE is processed. file% is the
number of the DBF file.

EMPTY_TRANSACTION Indicating the command EMPTY_TRANSACTION is processed.

EMPTY_TRANSACTION_EX(file%
)

Indicating the command EMPTY_TRANSACTION_EX is processed.
file% is the number of the transaction file.

ENABLE_READER(N%) Indicating the command ENABLE READER is processed. N% is
the number of the reader port.

EQU? (N1%,N2%) Indicating the decision “IF N1% = N2%” is processed.

EVENT(0) Indicating the “COM(1) EVENT” happens.

EVENT(1) Indicating the “COM(2) EVENT” happens.

EVENT(2) Indicating the “COM(3) EVENT” happens.

EVENT(3) Reserved.

EVENT(4) Reserved.

EVENT(5) Reserved.

EVENT(6) Reserved.

EVENT(7) Reserved.

EVENT(8) Reserved.

EVENT(9) Indicating the “TIMER(1) EVENT” happens.

EVENT(10) Indicating the “TIMER(2) EVENT” happens.

EVENT(11) Indicating the “TIMER(3) EVENT” happens.

EVENT(12) Indicating the “TIMER(4) EVENT” happens.

EVENT(13) Indicating the “TIMER(5) EVENT” happens.

EVENT(14) Indicating the “ON MINUTE EVENT” happens.

EVENT(15) Indicating the “ON HOUR EVENT” happens.

EVENT(16) Indicating the “READER(1) EVENT” happens.

EVENT(17) Indicating the “READER(2) EVENT” happens.

EVENT(18) Indicating the “FUNCTION(1) EVENT” happens.

EVENT(19) Indicating the “FUNCTION(2) EVENT” happens.

230

CipherLab 8600 BASIC Programming Part I

EVENT(20) Indicating the “FUNCTION(3) EVENT” happens.

EVENT(21) Indicating the “FUNCTION(4) EVENT” happens.

EVENT(22) Indicating the “FUNCTION(5) EVENT” happens.

EVENT(23) Indicating the “FUNCTION(6) EVENT” happens.

EVENT(24) Indicating the “FUNCTION(7) EVENT” happens.

EVENT(25) Indicating the “FUNCTION(8) EVENT” happens.

EVENT(26) Indicating the “FUNCTION(9) EVENT” happens.

EVENT(27) Indicating the “FUNCTION(10) EVENT” happens.

EVENT(28) Indicating the “FUNCTION(11) EVENT” happens.

EVENT(29) Indicating the “FUNCTION(12) EVENT” happens.

EVENT(30) Reserved.

EVENT(31) Indicating the “ESC EVENT” happens.

EXP(N1%,N2%) Indicating an exponentiation is processed.

FALSE?(N%) Indicating the “IF” statement or the “WHILE” statement is
processed.

FILL_RECT(...) Indicating the command FILL_RECT is processed.

FIND_RECORD(...) Indicating the command FIND_RECORD is processed.

FLASH_READ$(N%) Indicating the command FLASH_READ$ is processed.

FLASH_WRITE(N%,A$) Indicating the command FLASH_WRITE is processed.

FREE_MEMORY Indicating the command FREE_MEMORY is processed.

FUNCTION_TOGGLE(status%) Indicating the command FUNCTION_TOGGLE is processed.

GE? (N1%,N2%) Indicating the decision “IF N1% >= N2%” is processed.

GET_ALPHA_LOCK Indicating the command GET_ALPHA_LOCK is processed.

GET_BKLIT_LEVEL(…) Indicating the command GET_BKLIT_LEVEL is processed.

GET_COLOR(..) Indicating the command GET_COLOR is processed.

GET_CTS(N%) Indicating the command GET_CTS is processed. N% is the
number of the COM port.

GET_DEVICE_ID Indicating the command DEVICE_ID is processed.

GET_FILE_ERROR Indicating the command GET_FILE_ERROR is processed.

GET_IMAGE Indicating the command GET_IMAGE is processed.

GET_LANGUAGE Indicating the command GET_LANGUAGE is processed.

GET_NET_PARAMETER$(index%
)

Indicating the command GET_NET_PARAMETER$ is processed.

GET_NET_STATUS(index%) Indicating the command GET_NET_STATUS is processed.

GET_READER_DATA$(N%) Indicating the command GET_READER_DATA$ is processed. N%
is the number of the reader port.

GET_READER_SETTING(N%) Indicating the command GET_READER_SETTING is processed.
N% is the setting number.

 231

 Appendix V Debugging Commands

GET_RECORD$(file%[,index%]) Indicating the command GET_RECORD$ is processed.

GET_RECORD_NUMBER(file%[,i
ndex%])

Indicating the command GET_READER_NUMBER is processed.

GET_RFID_KEY(TagType%) Indicating the command GET_RFID_KEY is processed.

GET_TARGET_MACHINE$ Indicating the command GET_TARGET_MACHINE$ is processed.

GET_TCPIP_MESSAGE Indicating the command GET_TCPIP_MESSAGE is processed.

GET_TRANSACTION_DATA$(N%
)

Indicating the command GET_TRANSACTION_DATA is processed.
N% is the ordinal number of the record to be read.

GET_TRANSACTION_DATA_EX$
(file%,N%)

Indicating the command GET_TRANSACTION_DATA_EX is
processed.

GOSUB(N%) Indicating the program branches to a subroutine. N% is the line
number of the first line of the subroutine.

GOTO(N%) Indicating the program branches to line number N%.

GT? (N1%,N2%) Indicating the decision “IF N1% > N2%” is processed.

HEX$(N%) Indicating the command HEX$ is processed.

INKEY$(A$) Indicating the command INKEY is processed.

INPUT Indicating the command INOUT is processed.

INPUT_MODE(mode%) Indicating the command INPUT_MODE is processed.

INSTR([N%,] X$,Y$) Indicating the command INSTR is processed.

INT(N%) Indicating the command INT is processed.

IOPIN_STATUS(N%) Indicating the command IOPIN_STATUS is processed.

KEY_CLICK(status%) Indicating the command KEY_CLICK is processed.

L(N%) Indicating the line number being executed.

LCASE$(X$) Indicating the command LCASE$ is processed.

LE? (N1%,N2%) Indicating the decision “IF N1% <= N2%” is processed.

LED(...) Indicating the command LED is processed.

LEFT$(X$,N%) Indicating the command LEFT$ is processed.

LEN(X$) Indicating the command LEN is processed.

LINE(...) Indicating the command LINE is processed.

LOCATE(N1%,N2%) Indicating the command LOCATE is processed.

LOCK Indicating the command LOCK is processed.

LT? (N1%,N2%) Indicating the decision “IF N1% < N2%” is processed.

MAIN_BATTERY Indicating the command MAIN_BATTERY is processed.

MENU(Item$) Indicating the command MENU is processed.

MEMORY_INFORMATION(N%) Indicating the command MEMORY_INFORMATION is processed.

MID$(X$,N%[,M%]) Indicating the command MID$ is processed.

MOD(N1%,N2%) Indicating a modulo operation is processed.

232

CipherLab 8600 BASIC Programming Part I

MOVE_TO(file%[,index%],recor
d_number%)

Indicating the command MOVE_TO is processed. file% is the
number of the DBF file; index% is the number of the IDX file;
record_number% is the record number to move to.

MOVE_TO_NEXT(file%[,index%]
)

Indicating the command MOVE_TO_NEXT is processed.

MOVE_TO_PREVIOUS(file%[,ind
ex%])

Indicating the command MOVE_TO_PREVIOUS is processed.

MUL(N1%,N2%) Indicating a multiplication is processed.

NEG (N1%) Indicating a negation is processed.

NEQ? (N1%,N2%) Indicating the decision “IF N1% <> N2%” is processed.

NCLOSE(N%) Indicating the command NCLOSE is processed. N% is the
connection number.

NOT Indicating the logical operation NOT is processed.

NREAD$(N%) Indicating the command NREAD$ is processed. N% is the
connection number.

NWRITE(N%,A$) Indicating the command NWRITE is processed.

OCT$(N%) Indicating the command OCT$ is processed.

OFF_ALL Indicating the command OFF ALL is processed.

OFF_COM(N%) Indicating the command OFF COM is processed. N% is the
number of the COM port.

OFF_ESC Indicating the command OFF ESC is processed.

OFF_HOUR_SHARP Indicating the command OFF HOUR_SHARP is processed.

OFF_KEY(number%) Indicating the command OFF KEY is processed.

OFF_MINUTE_SHARP Indicating the command OFF MINUTE_SHARP is processed.

OFF_READER(N%) Indicating the command OFF READER is processed. N% is the
number of the reader port.

OFF_TCPIP Indicating the command OFF TCPIN is processed.

OFF_TIMER(N%) Indicating the command OFF TIMER is processed. N% is the
number of the timer.

ON_COM(N1%,N2%) Indicating the command ON COM GOSUB is called. N1% is the
umber of the COM port; N2% is the line number of the
subroutine to branch to.

ON_ESC(N%) Indicating the command ON ESC GOSUB is called. N% is the line
number of the subroutine to branch to.

ON_GOSUB(N%) Indicating the command ON GOSUB is called. N% is the line
number of the subroutine to branch to.

ON_GOTO(N%) Indicating the command ON GOTO is called. N% is the line
number of the subroutine to branch to.

ON_HOUR_SHARP(N%) Indicating the command ON HOUR_SHARP GOSUB is called. N%
is the line number of the subroutine to branch to.

ON_KEY(N%) Indicating the command ON KEY GOSUB is called. N% is the line
number of the subroutine to branch to.

 233

 Appendix V Debugging Commands

ON_MINUTE_SHARP(N%) Indicating the command ON MINUTE_SHARP GOSUB is called.
N% is the line number of the subroutine to branch to.

ON_POWER_ON(N%) Indicating the command ON POWER_ON GOSUB is called. N% is
the line number of the subroutine to branch to.

ON_READER(N1%,N2%) Indicating the command ON READER GOSUB is called. N1% is
the number of the reader port; N2% is the line number of the
subroutine to branch to.

ON_TCPIP(N%) Indicating the command ON TCPIP GOSUB is called. N% is the
line number of the subroutine to branch to.

ON_TIMER(N1%,N2%) Indicating the command ON TIMER GOSUB is called.

OPEN_COM(N%) Indicating the command OPEN_COM is processed. N% is the
number of the COM port.

OR Indicating the logical operation OR is processed.

POWER_ON(N%) Indicating the command POWER_ON is processed. N% is the
value of the setting.

PRINT(A$) Indicating the command PRINT is processed.

PUT_PIXEL(...) Indicating the command PUT_PIXEL is processed.

PUTKEY(N%) Indicating the command PUTKEY is processed.

RAM_SIZE Indicating the command RAM_SIZE is processed.

READ_COM$(N%) Indicating the command READ_COM$ is processed. N% is the
number of the COM port.

READER_CONFIG Indicating the command READER_CONFIG is processed.

READER_SETTING(N1%,N2%) Indicating the command READER_SETTING is processed. N1% is
the setting number; N2% is the value of the setting.

RECORD_COUNT(file%) Indicating the command RECORD_COUNT is processed.

RECTANGLE(...) Indicating the command RECTANGLE is processed.

RESTART Indicating the command RESTART is processed.

RETURN(N%) Indicating the command RETURN is processed. N% is the line
number to return, if it is not null.

RIGHT$(X$,N%) Indicating the command RIGHT$ is processed.

ROM_SIZE Indicating the command ROM_SIZE is processed.

SAVE_TRANSACTION(data$) Indicating the command SAVE_TRANSACTION is processed.

SAVE_TRANSACTION_EX(file%,
data$)

Indicating the command SAVE_TRANSACTION_EX is processed.

SD_FREE_MEMORY Indicating the command SD_FREE_MEMORY is processed.

SD_SIZE Indicating the command SD_SIZE is processed.

SELECT_FONT(font%) Indicating the command SELECT_FONT is processed.

SET_AUTO_BKLIT(…) Indicating the command SET_AUTO_BKLIT is processed.

SET_BKLIT_LEVEL(…) Indicating the command SET_BKLIT_LEVEL is processed.

SET_COLOR(…) Indicating the command SET_COLOR is processed.

234

CipherLab 8600 BASIC Programming Part I

SET_COM(...) Indicating the command SET_COM is processed.

SET_COMM_TYPE(N%,type%) Indicating the command SET_COMM_TYPE is processed.

SET_CURSOR(status%) Indicating the command CURSOR is processed.

SET_LANGUAGE(N%) Indicating the command SET_LANGUAGE is processed. N% is
the setting of language.

SET_NET_PARAMETER(index%,
A$)

Indicating the command SET_NET_PARAMETER is processed.

SET_PRECISION(N%) Indicating the command SET_PRECISION is processed. N% is
the numeric precision.

SET_RFID_KEY(...) Indicating the command SET_RFID_KEY is processed.

SET_RFID_READ(...) Indicating the command SET_RFID_READ is processed.

SET_RFID_WRITE(...) Indicating the command SET_RFID_WRITE is processed.

SET_RTS(N1%,N2%) Indicating the command SET_RTS is processed. N1% is the
number of the COM port; N2% is the RTS status.

SET_VIDEO_MODE(mode%) Indicating the command SET_VIDEO_MODE is processed.

SET_WEDGE(WedgeSetting$) Indicating the command SET_WEDGE is processed.

SHOW_BMP(…) Indicating the command SHOW_BMP is processed.

SHOW_IMAGE(...) Indicating the command SHOW_IMAGE is processed.

SIGN(N%) Indicating the command SGN is processed.

SOCKET_CAN_SEND(...) Indicating the command SOCKET_CAN_SEND is processed.

SOCKET_HAS_DATA(N%) Indicating the command SOCKET_HAS_DATA is processed. N%
is the connection number.

SOCKET_OPEN(N%) Indicating the command SOCKET_OPEN is processed. N% is the
connection number.

START TCPIP Indicating the command START TCPIP is processed.

STOP_BEEP Indicating the command STOP BEEP is processed.

STOP TCPIP Indicating the command STOP TCPIP is processed.

STR$(N%) Indicating the command STR$ is processed.

STRING$(...) Indicating the command STRING$ is processed.

SUB(N1%,N2%) Indicating a subtraction is processed.

SYSTEM_INFORMATION$(index
%)

Indicating the command SYSTEM_INFORMATION$ is processed.

SYSTEM_PASSWORD(A$) Indicating the command SYSTEM_PASSWORD is processed. A$ is
the character string to be written as the password.

T(N%) Indicating the stack's level. When the program branches to a
subroutine, the stack's level increases 1; when the program
returns, the stack's level decreases 1. It can be used to check if
the “stack overflow” problem happens.

TCP_ERR_CODE Indicating the command TCP_ERR_CODE is processed.

TCP_OPEN(...) Indicating the command TCP_OPEN is processed.

 235

 Appendix V Debugging Commands

TIME$ Indicating the system time is inquired.

TIME$(X$) Indicating the system time is updated. X$ is the new system
time.

TIMER Indicating the command TIMER is processed.

TRANSACTION_COUNT Indicating the command TRANSACTION_COUNT is processed.

TRANSACTION_COUNT_EX(file
%)

Indicating the command TRANSACTION_COUNT_EX is
processed.

TRIM_LEFT$(X$) Indicating the command TRIM_LEFT$ is processed.

TRIM_RIGHT$(X$) Indicating the command TRIM_RIGHT$ is processed.

UCASE$(X$) Indicating the command UCASE$ is processed.

UNLOCK Indicating the command UNLOCK is processed.

UPDATE_BASIC(file%) Indicating the command UPDATE_BASIC is processed.

UPDATE_RECORD(...) Indicating the command UPDATE_RECORD is processed.

UPDATE_TRANSACTION(N%,dat
a$)

Indicating the command UPDATE_TRANSACTION is processed.

UPDATE_TRANSACTION_EX(...) Indicating the command UPDATE_TRANSACTION_EX is
processed.

USER_COLOR(…) Indicating the command USER_COLOR is processed.

VAL(X$) Indicating the command VAL is processed.

VALF(X$) Indicating the command VALR is processed.

VERSION(A$) Indicating the command VERSION is processed. A$ is the
character string to be written as the version information.

VIBRATOR(mode%) Indicating the command VIBRATOR is processed.

WAIT(duration%) Indicating the command WAIT is processed.

WAIT_HOURGLASS(...) Indicating the command WAIT_HOURGLASS is processed.

WRITE_COM(N%,A$) Indicating the command WRITE_COM is processed.

XOR Indicating the logical operation XOR is processed.

236

CipherLab 8600 BASIC Programming Part I

 237

Error Code Explanation

1 Unknown operator

2 Operand count mismatch

3 Type mismatch

4 Can't perform type conversion

5 No available temp string

6 Illegal operand

7 Not an L-value

8 Float error

9 Bad array subscript

10 Unknown function

11 Illegal function call

12 Return without GOSUB

Appendix VI
RUN-TIME ERROR TABLE

238

CipherLab 8600 BASIC Programming Part I

 239

Key Name Key Code Key Name Key Code Key Name Key Code Key Name Key Code

CLEAR 1 > 62 a 97 F6 133

BS 8 A 65 b 98 F7 134

CR 13 B 66 c 99 F8 135

ESC 27 C 67 d 100 F9 136

SP 32 D 68 e 101 F10 137

35 E 69 f 102 F11 138

$ 36 F 70 g 103 F12 139

% 37 G 71 h 104 UP 140

& 38 H 72 i 105 DOWN 141

(40 I 73 j 106 LEFT 142

) 41 J 74 k 107 RIGHT 143

* 42 K 75 l 108 F13 144

+ 43 L 76 m 109 F14 145

, 44 M 77 n 110 F15 146

- 45 N 78 o 111 F16 147

. 46 O 79 p 112 F17 148

/ 47 P 80 q 113 F18 149

0 48 Q 81 r 114 F19 150

1 49 R 82 s 115 F20 151

2 50 S 83 t 116 152

3 51 T 84 u 117 153

4 52 U 85 v 118 154

5 53 V 86 w 119 FESC 155

6 54 W 87 x 120 156

7 55 X 88 y 121 TAB 160

8 56 Y 89 z 122 161

9 57 Z 90 F1 128 DEL 162

: 58 91 F2 129 VOL + 163

; 59 \ 92 F3 130 VOL - 164

< 60 93 F4 131 167

= 61 94 F5 132 169

Appendix VII
KEY CODE TABLE

240

CipherLab 8600 BASIC Programming Part I

A
ABS • 29
ADD_RECORD • 152
ALPHA_LOCK • 112
ASC • 43
AUTO_OFF • 61

B
BACK_LIGHT_DURATION • 114
BACKLIT • 115, 116, 117
BACKUP_BATTERY • 107
BEEP • 99
BIT_OPERATOR • 29

C
CHR$ • 43
CIRCLE • 130
CLEAR • 221
CLR_KBD • 108
CLR_RECT • 124
CLS • 125
CODE_TYPE • 85
CURSOR • 120, 121
CURSOR_X • 121
CURSOR_Y • 122

D
DATE$ • 104
DAY_OF_WEEK • 105
DEL_RECORD • 153
DEL_TRANSACTION_DATA • 144
DEL_TRANSACTION_DATA_EX • 145
DEVICE_ID$ • 66
DIM • 29
DISABLE READER • 76
DOWNLOAD_BASIC • 71

E
EMPTY_FILE • 154
EMPTY_TRANSACTION • 146
EMPTY_TRANSACTION_EX • 146
ENABLE READER • 77
EXIT • 37

F
FILL_RECT • 123
FIND_RECORD • 155

FLASH_READ$ • 139
FLASH_WRITE • 140
FOR … NEXT • 37
FREE_MEMORY • 141
FUNCTION_TOGGLE • 113

G
GET_ALPHA_LOCK • 112
GET_BKLIT_LEVEL • 117
GET_COLOR • 120
GET_FILE_ERROR • 159
GET_IMAGE • 128
GET_LANGUAGE • 133
GET_READER_DATA$ • 77
GET_READER_SETTING • 86
GET_RECORD$ • 156
GET_RECORD_NUMBER • 156
GET_RFID_KEY • 90
GET_TARGET_MACHINE$ • 67
GET_TRANSACTION_DATA$ • 147
GET_TRANSACTION_DATA_EX$ • 147
GET_TRIGGER • 110
GOSUB • 30
GOTO • 30

H
HEX$ • 43

I
IF … THEN … [ELSE…] • 33
IF … THEN … {ELSE IF…} [ELSE…] END

IF • 33
IF … THEN … END IF • 34
INKEY$ • 108
INPUT • 109
INPUT_MODE • 109
INSTR • 40
INT • 30
IOPIN_STATUS • 62

K
KEY_CLICK • 109

L
LCASE$ • 43
LED • 101
LEFT$ • 41
LEN • 40

Index

CipherLab 8600 BASIC Programming Part I

LINE • 130
LOCATE • 122
LOCK • 59

M
MAIN_BATTERY • 107
MEMORY_INFORMATION • 138
MENU • 64
MID$ • 41
MOVE_TO • 157
MOVE_TO_NEXT • 157
MOVE_TO_PREVIOUS • 157

O
OCT$ • 44
OFF ALL • 48
OFF COM • 48
OFF ESC • 49
OFF HOUR_SHARP • 49
OFF KEY • 50
OFF MINUTE_SHARP • 50
OFF READER • 51
OFF TCPIP • 51
OFF TIMER • 51
ON … GOSUB … • 35
ON … GOTO … • 36
ON COM… GOSUB… • 52
ON ESC GOSUB… • 52
ON HOUR_SHARP GOSUB… • 53
ON KEY… GOSUB… • 54
ON MINUTE_SHARP GOSUB… • 56
ON POWER_ON GOSUB • 57
ON READER… GOSUB… • 57
ON TCPIP GOSUB… • 58
ON TIMER… GOSUB… • 58
OSK_TOGGLE • 111

P
POWER_ON • 65
PRINT • 123
PUT_PIXEL • 131
PUTKEY • 110

R
RAM_SIZE • 141
READ • 222
READER_CONFIG • 77
READER_SETTING • 86
RECORD_COUNT • 157
RECTANGLE • 131
REM • 31
REMOVE • 222
RESTART • 65
RIGHT$ • 42

ROM_SIZE • 140

S
SAVE_TRANSACTION • 148
SAVE_TRANSACTION_EX • 148
SD_FREE_MEMORY • 142
SD_SIZE • 142
SELECT_FONT • 136
SET_AUTO_BKLIT • 115
SET_BKLIT_LEVEL • 116
SET_COLOR • 119
SET_LANGUAGE • 135
SET_PRECISION • 31
SET_PWR_KEY • 111
SET_RFID_KEY • 90
SET_RFID_READ • 89
SET_RFID_WRITE • 89
SET_TRIG2KEY • 111
SET_TRIGGER • 110
SET_VIDEO_MODE • 118
SET_WEDGE • 98
SGN • 31
SHOW_BMP • 128
SHOW_IMAGE • 128
START_DEBUG • 225
STOP BEEP • 100
STOP_DEBUG • 226
STR$ • 44
STRING$ • 46
SYSTEM_INFORMATION$ • 68
SYSTEM_PASSWORD • 70

T
TIME$ • 105
TIMER • 106
TR • 222
TRANSACTION_COUNT • 149
TRANSACTION_COUNT_EX • 149
TRIM_LEFT$ • 42
TRIM_RIGHT$ • 42
TW • 223

U
UCASE$ • 44
UNLOCK • 60
UPDATE_BASIC • 72
UPDATE_RECORD • 158
UPDATE_TRANSACTION • 150
UPDATE_TRANSACTION_EX • 150
USER_COLOR • 120

V
VAL • 44
VALR • 45

 Index

VERSION • 69
VIBRATOR • 103

W
WAIT • 106
WAIT_HOURGLASS • 124
WHILE … WEND • 38

	Release Notes
	Introduction
	Development Environment
	1.1 Directory Structure
	1.2 BASIC Runtime Engines
	1.3 Development Flow
	1.3.1 Download Runtime Engine
	1.3.2 Edit/Compile BASIC Programs
	1.3.3 Download BASIC Object Files

	Using BASIC Compiler
	2.1 File Menu
	2.2 Edit Menu
	2.3 Configure Menu
	2.4 Compile Menu
	2.5 Help Menu

	Basics of the CipherLab BASIC Language
	3.1 Constants
	3.1.1 String
	3.1.2 Numeric

	3.2 Variables
	3.2.1 Variable Names and Declaration Characters
	3.2.2 Array Variables

	3.3 Expression and Operators
	3.3.1 Assignment Operator
	3.3.2 Arithmetic Operator
	3.3.3 Relational Operator
	3.3.4 Logical Operator

	3.4 Operator Precedence
	3.5 Labels
	3.6 Subroutines
	3.7 Programming Style

	BASIC Commands
	4.1 General Commands
	4.2 Commands for Decision Structures
	4.3 Commands for Looping Structures
	4.4 Commands for String Processing
	4.4.1 Combining Strings
	4.4.2 Comparing Strings
	4.4.3 Getting the Length of a String
	4.4.4 Searching for Strings
	4.4.5 Retrieving Part of Strings
	4.4.6 Converting for Strings
	4.4.7 Creating Strings of Repeating Characters

	4.5 Commands for Event Trapping
	4.5.1 Event Triggers
	4.5.2 Lock and Unlock

	4.6 System Commands
	4.6.1 General
	4.6.2 System Information
	4.6.3 Security
	4.6.4 Program Manipulation
	BASIC Program – Format of Transaction File

	4.7 Barcode Reader Commands
	4.7.1 General
	Sample Code

	4.7.2 Code Type
	4.7.3 Reader Settings

	4.8 RFID Reader Commands
	4.8.1 Virtual COM
	4.8.2 Data Format
	4.8.3 Authentication

	4.9 Keyboard Wedge Commands
	4.9.1 Definition of the WedgeSetting Array
	1st Element: KBD / Terminal Type
	2nd Element
	3rd Element: Inter-Character Delay

	4.9.2 Composition of Output String

	4.10 Speaker Commands
	4.11 LED Command
	4.12 Vibrator Commands
	4.13 Real-Time Clock Commands
	4.14 Battery Commands
	4.15 Keypad Commands
	4.15.1 General
	4.15.2 ALPHA Key
	4.15.3 FN Key

	4.16 LCD Commands
	4.16.1 Properties
	4.16.2 Cursor
	4.16.3 Display
	4.16.4 Clear
	4.16.5 Image
	4.16.6 Graphics

	4.17 Fonts
	4.17.1 Font Size
	4.17.2 Display Capability
	4.17.3 Multi-language Font File
	4.17.4 Special Font Files

	4.18 Memory Commands
	4.18.1 Flash
	4.18.2 SRAM
	4.18.3 SD Card

	4.19 File Manipulation
	4.19.1 DAT Files
	4.19.2 DBF Files and IDX Files
	Key Number
	Key Value

	4.19.3 Error Code

	4.20 SD Card
	4.20.1 File System
	4.20.2 Directory
	4.20.3 File Name

	ScannerDesTbl Arrays
	Symbology Parameter Table for CCD/Laser Reader
	Symbology Parameter Table for 2D Reader

	Symbology Parameters
	CCD or Laser Scan Engine
	Codabar
	Code 2 of 5 Family
	Industrial 25
	Interleaved 25
	Matrix 25
	Coop 25

	Code 39
	Code 93
	Code 128/EAN-128/ISBT 128
	Italian/French Pharmacode
	MSI
	Negative Barcode
	Plessey
	GS1 DataBar (RSS) Family
	Telepen
	UPC/EAN Families
	EAN-8
	EAN-13
	EAN-13 Addon Mode
	GTIN
	UPC-A
	UPC-E
	Addon Security for UPC/EAN
	UPC/EAN Security
	UPC/EAN Quiet Zone

	2D Scan Engine – 1D Symbologies
	Codabar
	Code 2 of 5
	Industrial 25 (Discrete 25)
	Interleaved 25
	Chinese 25
	Matrix 25

	Code 39
	Code 93
	Code 128
	Code 128
	ISBT 128
	UCC/EAN-128

	MSI
	GS1 DataBar (RSS) Family
	UPC/EAN Families
	UPC/EAN — Bookland ISBN Format

	UCC Coupon Code
	Joint Configuration
	Table I
	Table II

	Code 11
	1D Inverse

	2D Scan Engine – 2D Symbologies
	Postal Code Family
	Composite Codes
	CC-A/B/C
	TLC-39
	UPC Composite
	UPC Composite
	Maxicode, Data Matrix & QR Code
	2D Inverse/Mirror
	PDF417

	Scanner Parameters
	Scan Mode
	Comparison Table

	Read Redundancy
	Time-Out
	User Preferences

	Reserved Host Commands
	Debugging Commands
	Debugging Example
	Debugging Messages

	Run-Time Error Table
	Key Code Table
	Index

