CipherLab
User Guide

BASIC Language Programming
Part |I: Basics and Hardware Control

For 8600 Series Mobile Computers

Version 1.05

CIPHER Lm

Copyright © 2015 ~ 2016 CIPHERLAB CO., LTD.
All rights reserved

The software contains proprietary information of CIPHERLAB CO., LTD.; it is provided
under a license agreement containing restrictions on use and disclosure and is also
protected by copyright law. Reverse engineering of the software is prohibited.

Due to continued product development this information may change without notice. The
information and intellectual property contained herein is confidential between CIPHERLAB
and the client and remains the exclusive property of CIPHERLAB CO., LTD. If you find
any problems in the documentation, please report them to us in writing. CIPHERLAB does
not warrant that this document is error-free.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of CIPHERLAB CO., LTD.

For product consultancy and technical support, please contact your local sales
representative. Also, you may visit our web site for more information.

The CipherLab logo is a registered trademark of CIPHERLAB CO., LTD.

All brand, product and service, and trademark names are the property of their registered
owners.

The editorial use of these names is for identification as well as to the benefit of the
owners, with no intention of infringement.

CIPHERLAB CO., LTD.
Website: http://www.cipherlab.com

http://www.cipherlab.com/

RELEASE NOTES

Version Date Notes

1.05 Sep. 26, 2016 Part |

> Modified: Appendix I —
Symbology Parameter Table for CCD/Laser/Long Range Reader —
1 'B9’, '62’, '65’, '68’ = Max. 127 (default)
: ‘60’, 63, '66’, '69’ = Min. 4 (default)
Symbology Parameter Table for 2D/Extra Long Range Reader —
1 '61'=1, '62'=Max. 55, '63'=Min. 4
: '65'=Max. 55, '66'=Min. 4
: '68'=Max. 55, '69'=Min. 4
: '88'=1, '89'=Max. 55, '90'=Min. 4
1 '113'=1, '114'=Max. 55, '115'=Min.
:'116'=1, '117'=Max. 55, '118'=Min.
:'119'=1, '120'=Max. 55, '121'=Min.
1 '122'=1, '123'=Max. 55, '124'=Min.
» Modified: Appendix 11 —
Scan Engine, CCD or Laser —
CODE 2 OF 5 FAMILY —
INDUSTRIAL 25:
: '69' = Max. 127 (default), '60' = Min. 4 (default)
INTERLEAVED 25:
1 '62' = Max. 127 (default), '63' = Min. 4 (default)
MATRIX 25:
1 '65' = Max. 127 (default), '66' = Min. 4 (default)
MSI —
1 '68' = Max. 127 (default), '69' = Min. 4 (default)
Scan Engine, 2D or (Extra) Long Range Laser —
CODABAR —
:'122'=1, '123'=Max. 55, '124'=Min. 4
descriptions for Length Qualification added
CODE 2 OF 5 FAMILY —
INDUSTRIAL 25 (DISCRETE 25):
:'119'=1, '120'=Max. 55, '121'=Min. 4
INTERLEAVED 25:
:'61'=1, '62'=Max. 55, '63'=Min. 4

A D b A

MATRIX 25:
:'65'=Max. 55, '66'=Min. 4
CODE 39 —
1'88'=1, '89'=Max. 55, '90'=Min. 4
CODE 93 —
1'113'=1, '114'=Max. 55, '115'=Min. 4
MSI —
:'68'=Max. 55, '69'=Min. 4
CODE 11 —

:'116'=1, '117'=Max. 55, '118'=Min. 4
Part 11

- None

1.04

1.03

1.02

Nov. 12, 2015 Part |
» Modified: descriptions relating to ‘CD-ROM’ removed

» Modified: Appendix I — SYMBOLOGY PARAMETER TABLE FOR
CCD/LASER READER: No. 190, 300 ~ 317 appended

> Modified: Appendix I — SYMBOLOGY PARAMETER TABLE FOR 2D
READER: No. 183 ~ 187 appended

» Modified: Appendix Il — CCD or Laser Scan Engine — No. 190, 300
~ 317 appended

» Modified: Appendix Il — 2D Scan Engine — 2D Symbologies: No.
186/187 appended to Composite Codes

Part 11
» Modified: Appendix Il — NetStatus index updated

Dec. 22, 2014 Part |
» Modified: 4.17.1 — table of font size updated
Modified: 4.17.2 — table of display capability updated

Modified: 4.17.4 — table of font size updated (GET_LANGUAGE,
SELECT_FONT)

> Modified: Appendix I —

Symbology Parameter Table Il: No. 181 added (2D)
> Modified: Appendix 111 —

User Preferences: No. 181 added (2D)

Part 11
- None

Jul. 22, 2014 Part |
> Modified: 4.15.1 — SET_TRIG2KEY function added
> Modified: Appendix I —
Symbology Parameter Table I: No. 54, 173~179 added (CCD/Laser)
Symbology Parameter Table Il: No. 174, 176~179, 182 added (2D)
> Modified: Appendix 11 —
CCD or Laser Scan Engine: No. 54, 173, 174 added
2D Scan Engine — 1D Symbologies: No. 174 added
» Modified: Appendix I11 —
Read Redundancy: No. 182 added

Part 11

- None

1.01 Jun. 17, 2014 Part 1
» Modified: 4.17.1 — the Kr font file removed

» Modified: 4.17.4 — descriptions concerning KR removed
(SELECT_FONT)

Part 11
- None
1.00 Jan 13, 2014 Part |
» Initial release
Part 11

» Initial Release

CONTENTS

RELEASE NOTES ... crrcrirrssersseessnssensssssessnssssssssness -3-
INTRODUCT IO N tiitisssnsssnsssans 1
DEVELOPMENT ENVIRONMENT ..o ccccecmrrrrrsssssssssssesssnsssssnees 3
1.1 DIr€CLONY STIUCTUIE ... sn e e s e neneennenn e e 3
1.2 BASIC RUNTIME ENQINESooieeeeeeeeeeie sttt te e s aee e se e e saesse e e tesne s s e sesnennneens 5
1.3 DeVEIOPMENT FIOW.......oiiieeeeeeeeeee et 6
1.3.1 Download RUNTIME ENQGINE ..o 6
1.3.2 Edit/Compile BASIC ProgramiS.......cccoceeorrerererersessessessesessesesessessessesssssssssesaees 6
1.3.3 Download BASIC ODBJECT FIlES ...t 7
USING BASIC COMPILER ... cccrirrrisesssssscssesssssssssssssssesssssssssssssssssssssssssssnsnsssssssssssssnsnssssees 9
P T | = V1= o L6 OSSPSR 10
220 = o 11 A/ = o 1 S 11
2.3 CONTIGUIE IMENU ...ttt n e na e n e e s e nn e e 13
D2 N o] o 0] o 11 =0 1Y/ = o 1 S 15

P2 ST o (=1 @ I\ =T o 1 OSSR 16
BASICS OF THE CIPHERLAB BASIC LANGUAGE ... ccccecrrrrr e rssrssseerer s s s 17
G R 0 0153 = T g | S TSSOSO 17

G Tt]] o USSR 17

10 0 2 A 1 1= o oS 17

G Y= Y g = 0] = 18
3.2.1 Variable Names and Declaration Charactersc.ccceerereererenenesenseesennens 18
3.2.2 Array VariabIES ...ttt ettt e n e 20

3.3 EXPression and OPEIratOrS.......cccccecceriereeieseeeeestesesseessessesssesseeessseseensessesssessessssnsenns 21
GG T MAN=TS1 To [o T a g T=T o) M@ o 1=T ir= 1 € S 21

1 TG T2 AN) u aT 0 g 1=] o @ o T=T = {0 S 21
3.3.3 Relational OPErator ... e ceece e eecte ettt s se e s e e e 22

1 TG T2 N o T [To= LI @ o 1T =1 (o] S 22

R N @ oT=T =Y o] gl o g =Tot=T o (=] o [l TSSO 23

G S T 1= o 7= 23
3.6 SUDFOUTINES ...ttt 24
3.7 Programming STYIE ...ttt s ste et ae e e s 26
BASIC COMMANDS ... cittrrrsrssssssmssreresssssssssssss s s e s sssssssssmsssssesssssssssmmssssssssssssssnmnnssnesssnssssnnnes 27
4.1 General COMMEANUS ..ot a s b e s e e e e aenaeas 29
4.2 Commands fOor DeCISION STIUCTUIEScciiiirerererereeee et 32
4.3 Commands for LOOPING STIUCTUIESociirirerererieseese e 37

4.4 Commands for String ProCeSSINGccccvcirceeeeirieeeeee e esee e eesee e seesse e snae e ssnensens 39

CipherLab 8600 BASIC Programming Part |

4.4.1 COMDINING STFNGS..ccuiiieiiciere e ee e e e see e e e se e e e e s se s e e seeaeasessesanansens 39
Vi N OTe] o o] o =1 g [[0 IS o T e RS 39
4.4.3 Getting the Length Of @ STriNg ..o 40
4.4.4 SearChing fOr STHNQS ..ottt s e s ae e e nre s 40
4.4.5 Retrieving Part Of StriNGS ...ttt ne s 41
4.4.6 ConVerting fOr STHNGS ..o et rese e 43
4.4.7 Creating Strings of Repeating Charactersccoccevvecvceveeceseccesce e, 46
4.5 Commands for EVENt TrapPiNg.....ccccceceeereerecieseesesee e ssessseseeseessessesssesesssessessansens 47
Rt I AV o A N T T = = SRR SRR 47
4.5.2 LOCK @NA UNIOCK ... ettt ettt e e e e s e e e e esee e sneeeneeennean 59
V4 S GIRSIVASY (=1 o T @011 0 0 = T [3OS 61
I I T =T g =Y = | TR 61
4.6.2 SysStem INTOrMATION. ... s 66
T TR IS =T o U | g 1 PSSR SR 70
4.6.4 Program ManipUIATIONcoco et eeesne e e 71
4.7 Barcode Reader COMIMANAS ...t eeeee e et eeeeeeeeeeeaeeesseesesseeesseeeesseaeas 76
A N T =Y o= = Y TP 76
R 0 o To [T V7 o YRS 82
G B 2 == To [T ST = o o RS 86
4.8 RFID Reader COMMEANAS.......cccoceiieiiecieciecreecteee e seeeeeeeeesaesssesssessseesaeesasesssesnsessssensnes 87
S T Y4 [(U =Y I] 1Y T 88
LA S T2 B = = W 0] g 0 0 =1 88
VAR S TRC I AN U] o g T=T g} u{or= 1 0] o JR T O R R 90
4.9 Keyboard Wedge COMMEANTS.......c.ooeiereieeirereseseesse s sse s sessessssssessesneas 91
4.9.1 Definition of the WedgeSetting ArTaY ... ioereriereeeereeseeeere e eeee e 91
4.9.2 Composition Of OULPUL STrING ..ccooi oot 96
4.10 Speaker COMIMEANTSccocrirerieeriesreseer e ss s e e ese e sseesessesnesn e e e e eneeneas 99
4,11 LED COMIMANG......oiiiieiiiiiecteciteeiteesteeseeeeeeeesseessesssesssessssesssesssessesssesssesssessssesssesssesans 101
4.12 ViIDrator COMIMANAScceiiiiceeceeectiecee et eee s et s sse s se e s e e s eesseessesseesseesseesasesasenans 103
4.13 Real-Time CIoCK COMIMANASocceieceeeeeeeeetee et e e e e e e eneeas 104
V4 0 N S P2 u (=T Y @0 0 0 = U [0 S 107
V4 SR =)/ T=To B Oo] 0 01 F=1 5 o £SO 108
S T N €T =T o= = | OO 108
4.15.2 ALPHA KEY ..ttt st e et e st sessessessesae s ees e e e saessessesaensensnnsensensenees 112
. 15.3 FIN KBY weotreeeeteeieseente et e e e sae s e s ae e e et e e e s sessessessesseseneeneesessessnsseseensensansensensenees 113
2 W ST O B I 901 2 01 4 = U Lo [T 114
g I T I 0] 1= 1= S 114
N G T O U | 0 1 R 121
g I T T 10 1 13 o] - Y75 S 123
N ST O [=T= | RSP SRP 124
4 B G ST 1 o ¢ =V 1= RSP 126
T T T] = T o]] oSS 129
A o] 1 132
I T oY) AT 7.4 = 132
4.17.2 Display Capability ...t 132

4.17.3 Multi-language FONT File ...t 133

CipherLab 8600 BASIC Programming Part |

4.17.4 Special FONT FIlES ...ttt 133
V4 RS\ =T 0 g ToT YA 01 0 1 0 4 =1 0 Lo LSS 138
g It T I = T S 139
I T2 AN 1 RSO SNS 141
IS TG S I I - T o RSO S 142
4.19 File ManIPUIATION. ... s nn e 143
4.09.0 DAT FIlES.iiiieseseeeseeeee ettt s et e et sae e ssese e s eee e e e saesaessesaensensensensensenees 143
4.19.2 DBF Files and IDX FileS... .t 151
vt LS TG B =y] g 0 T [S 159
2 0 TS Y 0 I - T o SO 160
T O T I 1TSS 1= o S 160
2 O 2 I 1 =T o w0 Y 2 S 161
4.20.3 File NAIME ...ttt se bt eeeeeeaes 163
SCANNERDESTBL ARRAY S ..o ccccssscrrrrrrssssssssssssssssssssssssssssssssesssssssssssssssssssssssssnmnsssnees 165
Symbology Parameter Table for CCD/Laser Readerccoooririerereneseseesesenennes 165
Symbology Parameter Table for 2D Reader ... ioeceeceve et 173
SYMBOLOGY PARAMETERS. ...t ctretrerssssssssssessssssssssssssessnsns 183
CCD Or Laser SCaAN ENQGINE ..ot ree e st see e e s se e ne e e e e e eeesnes 183
(@700 F= 1 o 7= T cF0 SRS 183
(@0 To LT o) T =Y o 1 1 Y2 184
(@7 Y0 [T 1 LRSS 186
(@7 Y0 [T G SRS SASR 187
Code 128/EAN-128/ISBT 128......o et 187
Italian/French PRarmMacOde ...t e 188
Y Y SRS 188
NL=To F= LAY S T ol Lo [S 189
LT TS = RS 189
GS1 DataBar (RSS) FamMUlY ...ttt nn 190
1= 1] 13 S 191
UPC/EAN FAMUIES ... ottt st 191
2D Scan Engine — 1D SyMDBOIOGIEScoiiieiieirirrererese et 196
(@700 F= 1 o T= T cF0 RSOSSN 196
(@700 [SIbZ o) = TSRS 197
(@7 Y0 [T 1 LSS 200
(@7 Y0 [T G SRS SASR 201

(O Yo [T 122 J OSSPSR 201
Y Y SRRSO 202
GS1 DataBar (RSS) FamMUlY ...ttt nn 203
UPC/EAN FAMUES ... ottt 204
0[O O OLoT8] ol] o I G0 T [TSR 206
N[0T 1 @] o 1o 11 1 =14 T] o [206
(@7 Yo [0 5t RSP SSSR 208
2D Scan Engine — 2D SYMDBOIOGIESooveiicieececeeeceete ettt 209

(O] o g1 010 XS] | (=3 ©0 T [SRS 210

CipherLab 8600 BASIC Programming Part |

SCANNER PARAMETERS ...t ctrr e ts s e s es e s s s sme e s smses s e s s sms e s sme s e sne s s smn e s sme e ssnnneas 215
o= T 1Y/ (o T o [215
(@0T 0 q] o =T E=Te] o TN 1= 01 = 20 216
[RI=T= o I =T 0 [] g o F= T a oY 20 SR 218
T 0 =T 218
USEI PrETEIEINCES ... ettt st e e e e e e se et e neeeneeeeseeenenens 219
RESERVED HOST COMMANDS. ... trcctrrerrceesseessesssssesssessssssssesssessnsssssessssssnsssssessnssnes 221
DEBUGGING COMMANDS.....coictrrerssnrsssssssssssssssessnssssssssnsssnns 225
[DI=T o 18 Te [o [T To I =0%C= 1 0] o 11RO 227
[DT=T o 18 Te Lo [T aTo 1Y =TTy Vo T S 228
RUN-TIME ERROR TABLE ...t ititrrerssrrssrsssesssnsssnes 237
KEY CODE TABLE ...t ctictrsersssnssssssssnsssnes 239

INTRODUCTION

CipherLab BASIC Compiler provides users with a complete programming environment to
develop application programs for CipherLab 8600 Series Mobile Computers using the
BASIC language. The Windows-based Basic Compiler comes with a menu-driven interface
to simplify software development and code modifications. Many system configurations,
such as COM port properties and database file settings can be set up in the menus. Using
this powerful programming tool to get rid of lengthy coding, users can develop an
application to meet their own needs efficiently. The CipherLab BASIC Compiler has been
modified and improved since its first release in November 1997. Users can refer to
RELEASE.TXT for detailed revision history.

This manual is meant to provide detailed information about how to use the BASIC

Compiler to write application programs for CipherLab 8600 Series Mobile Computers. It is
organized in chapters giving outlines as follows:

Part I: Basics and Hardware Control

Chapter 1 “Development Environment” — gives a concise introduction about the CipherLab
BASIC Compiler, the development flow for applications, and the BASIC Compiler
Run-time Engines.

Chapter 2 “Using CipherLab BASIC Compiler” — gives a tour of the programming environment of
the BASIC Compiler.

Chapter 3 “Basics of CipherLab BASIC Language” — discusses the specific characteristics of the
CipherLab BASIC Language.

Chapter 4 “BASIC Commands” — discusses all the supported BASIC functions and statements.
More than 200 BASIC functions and statements are categorized according to their
functions, and discussed in details.

Part ll: Data Communications

Chapter 1 “Communication Ports”
Chapter 2 “TCP/IP Communications”
Chapter 3 “Wireless Networking”
Chapter 4 “IEEE 802.11b/g/n”
Chapter 5 “Bluetooth”

Chapter 6 “USB Connection”
Chapter 7 “GPS Functionality”
Chapter 8 “FTP Functionality”

CipherLab 8600 BASIC Programming Part |

Chapter 1
DEVELOPMENT ENVIRONMENT

Before you install the CipherLab BASIC Compiler, it is necessary to check that your PC
meets the following minimum requirements:

Items Requirements

CPU Pentium 75MHz

Operating System Windows 95/98/2000/NT/XP/Vista/7/8
Minimum RAM 16 MB

Minimum Hard Disk Space 20 MB

Note: Any mobile computer being programmed will need to have a minimum 128 KB

RAM.
IN THIS CHAPTER
1.1 DirecCtory StrUuCtUIe ...oiiiiii et eaaaas 3
1.2 BASIC Runtime ENgiNesooiiiiiii i 5
1.3 Development FIOW......c.eiiii e ea s 6

1.1 DIRECTORY STRUCTURE

The CipherLab BASIC Compiler Kit contains a number of directories, namely, BASIC
Compiler, Download Utility, BASIC Runtimes, and Font Files. The purposes and
contents of each directory are listed below.

To set up the BASIC programming environment on your PC, simply copy these directories
to your local hard disk.

BASIC Compiler

BC.exe The BASIC Compiler program.
Release.txt The revision history of the BASIC compiler.
Samples Include BASIC source files (.bas), initialization files (.ini) and BASIC object

files (.syn) of the sample programs.

Download Utility

ProgLoad.exe For downloading the following files to mobile computers via RS-232, USB,
or TCP/IP:

» Motorola S format object file (.shx)

> Basic object files (.syn and .ini)

CipherLab 8600 BASIC Programming Part |

BASIC Runtimes

BC8600.shx 8600 generic version Download font file if not
using system font

Font Files Font Size

8600 Font8600-Multi-Language20.shx > 10x20 (15 lines)

Font8600-Multi-Language24.shx P 12x24 (12 lines)

Font8600-TraditionalChinese20.shx P> 10x20 (15 lines)

Font8600-TraditionalChinese24.shx P 12x24 (12 lines)

Font8600-SimplifiedChinese20.shx P> 10x20 (15 lines)

Font8600-SimplifiedChinese24.shx P 12x24 (12 lines)

Font8600-Japanese20.shx P> 10x20 (15 lines)
4

Font8600-Japanese24.shx 12x24 (12 lines)

v v VvV VvV v VvV v Vv

Chapter 1 Development Environment

1.2 BASIC RUNTIME ENGINES

The BASIC Run-time Engines work as interpreters of the BASIC commands. CipherLab
Mobile Computers have to be loaded with the BASIC Run-time (Engines) to run the
BASIC programs; each mobile computer has its own Run-time Engine to drive its specific
hardware features. The Run-time Engines are named as “BCxxxx.shx”, where “BCxxxx” is
the model number of the target mobile computer. For example, “BC8600.shx” is the
BASIC Run-time for 8600 Series.

The BASIC Run-time also provides the capabilities for users to configure the mobile
computer. With the Run-time Engine loaded, the mobile computer can be set to the
“System Mode”. In the “System Mode”, users can set up the system settings such as the
system clock, update the user program, and so on. System Menu presented in the
“System Mode” varies, which is hardware-dependant. For detailed functions of System
Menu, please refer to the reference manual for each series of mobile computers.

Note: Press the following key combination to enter System Menu — [7], [9] and the
[POWER] key.

CipherLab 8600 BASIC Programming Part |

1.3 DEVELOPMENT FLOW

Developing a BASIC program for the mobile computers is as simple as counting 1-2-3.
There are three steps:

Step 1 — Download the BASIC Run-time to the target mobile computer.
Step 2 — Edit and compile the BASIC program.

Step 3 — Download the BASIC object file to the target mobile computer.
1.3.1 DOWNLOAD RUNTIME ENGINE

The BASIC Run-time Engines are programs being loaded on the mobile computers to
execute the BASIC object files. They must exist in the mobile computers before the
BASIC object files are downloaded. To download the Run-time Engine (and/ or any other
programs), the target mobile computer needs to be set to the “Download Mode” first to
receive the new program.

There are two ways to enter the “Download Mode” — one is via System Menu, and the
other via Kernel Menu. For details on how to download a program, please refer to the
reference manual for each series of mobile computers.

Note: After re-installing the battery pack, press the following key combination to enter
Kernel Menu — [1], [7] and the [POWER] key.

After the target mobile computer is set to the “Download Mode” and the connection to
the host PC is properly established, the user can run the download utility on the host PC
to download the BASIC Run-time or any other .shx files to the mobile computer. When
the Run-time Engine is downloaded successfully, the message “Ready for BASIC
Download” will be displayed on the mobile screen.

1.3.2 EDIT/COMPILE BASIC PROGRAMS

The BASIC Compiler, bc.exe, comes with a text editor where users can edit their BASIC
programs. Please refer to the next chapter for general information of the operation.

By default, the text being edited with the editor would be saved as a BASIC source file
(.bas). The system settings defined in the Configuration Menu, including “Target
Machine”, COM port settings, transaction file settings, DBF settings and barcode settings,
would be saved as a system initialization file (.ini) with the same name when the .bas file
is saved. The .ini file should be treated as part of the BASIC program, and should be
included when the BASIC program is distributed.

If the BASIC program compiles without any errors, a BASIC object file (.syn) with the
same name is generated. The .ini file and the .syn file are the two files to be downloaded
to the mobile computer. The .ini file contains the system settings, while the .syn file
contains the BASIC object code.

Chapter 1 Development Environment

1.3.3 DOWNLOAD BASIC OBJECT FILES

Use the BASIC Compiler or the ProglLoad.exe utility to download a compiled BASIC
program. ProglLoad.exe can only download BASIC programs without any viewing or
editing capabilities.

Both the .ini and .syn files must be downloaded to the target mobile computer. Be careful
that if the .ini file is missing, the BASIC Compiler will download the default settings
instead. In this case, it may cause errors during execution. In contrast to the BASIC
Compiler, Progload.exe will not process the downloading if the .ini file is missing, and an
error message will be shown on the display.

After the BASIC object file is downloaded, the target mobile computer will reboot itself to
execute the BASIC program. If any run-time error occurs, an error message will be
shown on the display. Please refer to Appendix VI — Run-Time Error Table for a list of
run-time errors. If the program is not running as desired, modify/compile the BASIC
source code and download it to the target mobile computer again.

CipherLab 8600 BASIC Programming Part |

Chapter 2
USING BASIC COMPILER

The CipherLab BASIC Compiler looks like a traditional Windows environment application
that supports file management, text editing, and some other functions to simplify the
BASIC program development. To run the compiler, one of the Windows operating
systems is required:

» Windows 95/98

Windows 2000

Windows XP

Windows Vista

Windows 7

Windows 8

v Vv Vv Vv Vv

L= Cipher-BASIC

File Edit Configure Compile Help
D||e] gla] #l=elo] =]
Ready

There are five menus on the menu bar, and each menu provides several
commands/items.

» File Menu

Edit Menu
Configure Menu
Compile Menu

v v Vv Vv

Help Menu

This chapter discusses the function and operation of each command/item.

IN THIS CHAPTER

2.1 FIle MENU .t 10
2.2 EAIt MENU ... e 11
2.3 CONTIGUIE MENU ..ot et aaanes 13
2.4 ComMPIle MENU. ... 15
2.5 HelPp MEBNU. ..t ettt e anees 16

CipherLab 8600 BASIC Programming Part |

2.1 FILE MENU

Six commands are provided in this menu.

L= Cipher-BASIC

=8 Edit Configure Compile Help
k Mew., .. Chrl+h |
Qpen... Chrl+i
Save fAs...
Print. .. Ckrl+P
Exit Alt+F4
Command To Do...
New » Function To create a new BASIC program.

> Operation Click “File” on the menu bar and select “New”.

For the same function, press hot key CTRL+ N or click the [New]
icon on the tool bar.

Open » Function To open an existing BASIC program.
> Operation Click “File” on the menu bar and select “Open”.

For the same function, press hot key CTRL+ O or click the [Open]
icon on the tool bar.

Save » Function To save the current editing BASIC program.
> Operation Click “File” on the menu bar and select “Save”.

For the same function, press hot key CTRL+ S or click the [Save]
icon on the tool bar.

Save As » Function To save the current editing BASIC program with a new name.

> Operation Click “File” on the menu bar and select “Save As”. Enter a new
name in the pop-up window. Then click the [Save] button to save
this program with the new file name.

Print » Function To print the current editing BASIC program.
> Operation Click “File” on the menu bar and select “Print”.

For the same function, press hot key CTRL+ P or click the [Print]
icon on the tool bar.

Exit » Function To quit the BASIC Compiler.
> Operation Click “File” on the menu bar and select “Exit”.

For the same function, press hot key ALT+ F4.

10

Chapter 2 Using BASIC Compiler

2.2 EDIT MENU

Seven commands are provided here to facilitate the editing of the BASIC source code.

T Cipher-BASIC =13

File Ms[® Configure Compile Help

D' EREE

Command To Do...

Undo » Function To abort the previous editing command or action.
> Operation Click “Edit” on the menu bar and select “Undo”.

For the same function, press hot key CTRL+ Z or click the [Undo]
icon on the tool bar.

Cut » Function To cut a paragraph off the text and place it on the clipboard. The
paragraph will be removed.

> Operation Drag the cursor to select the paragraph to be cut off. This
paragraph will be highlighted (in a reverse color). Click “Edit” on
the menu bar and select “Cut”.

For the same function, press hot key CTRL+ X or click the [Cut]
icon on the tool bar.

Copy » Function To copy a paragraph from the text to the clipboard.

> Operation Drag the cursor to select the paragraph to be copied. This
paragraph will be highlighted (in a reverse color). Click “Edit” on
the menu bar and select “Copy”.

For the same function, press hot key CTRL+ C or click the [Copy]
icon on the tool bar.

Paste » Function To paste a paragraph from the clipboard into the text. This
paragraph will be inserted to the text.

> Operation Move the cursor to the insertion point where the paragraph will be
inserted, and left-click the mouse. Click “Edit” on the menu bar
and select “Paste”.

For the same function, press hot key CTRL+ V or click the [Paste]
icon on the tool bar.

11

CipherLab 8600 BASIC Programming Part |

Delete

Select All

Find

12

Function

Operation

Function

Operation

Function

Operation

To delete a paragraph from the text. This paragraph will not be
placed on the clipboard.

Drag the cursor to select the paragraph to be deleted. This
paragraph will be highlighted (in a reverse color). Click “Edit” on
the menu bar and select “Delete”.

For the same function, press the Del key.
To select all the contents of the text.

Click “Edit” on the menu bar and select “Select All”. All the
contents will be highlighted (in a reverse color).

For the same function, press hot key CTRL+ A.
To find a specific letter, symbol, word, or paragraph in the text.

Click “Edit” on the menu bar and select “Find”. In the pop-up
window, enter the key word to be found in the text. Then, click the
[Find] button to start searching.

For the same function, press hot key CTRL+ F or click the [Find]
icon on the tool bar.

Chapter 2 Using BASIC Compiler

2.3 CONFIGURE MENU

Eight items are provided here for users to define the system settings. The “Configure
Transaction Files” and “Create DBF Files” items provide the option of “Share file space
with other applications”. The 8600 Series mobile computers support multiple applications,
but only one of them is active; this setting option allows different applications share the
same files.

T Cipher-BASIC
File Edit

S=1E

Compile Help
Tardet Machine. .. J

Configure

Prirnaty COM Pork Setkings. ..
Secondary COM Port Settings. ..
Configure Transaction Files. ..
Create DBF Files. ..

Barcode Settings...

Command To Do...

Target » Function To set the type of the target machine.

Machi
achine > Operation Click “Configure” on the menu bar and select “Target Machine”.

Then scroll through the drop-down menu in the pop-up window to
set the target machine. The selection of the target machine will
affect the number of transaction files, the available baud rate of
the COM port.

Master Card » Function To define the ID of the master setup card.

1D > Operation Click “Configure” on the menu bar and select “Master Card ID”.
Type the new card ID in the field in the pop-up window. (This
feature is only valid for stationary terminals, such as models
201/510/520.)

Primary COM » Function To set the properties of the primary COM port.

Port Settings

v

Operation Click “Configure” on the menu bar and select “Primary COM Port
Setting”. Select the desired settings for each property in the
pop-up window.

Secondary » Function To set the properties of the secondary COM port.
COM Port . .)
Settings or Operation Click “Configure” on the menu bar and select “Secondary COM Port

Settings”. Select the desired settings for each property in the
pop-up window.

13

CipherLab 8600 BASIC Programming Part |

Configure
Transaction
Files

Create DBF
Files

Barcode
Settings

RFID
Settings

» Function

> Operation

» Function

> Operation

» Function

> Operation

» Function

> Operation

To define the transaction files (up to 6) to be used and the data
length for each transaction file. Once the data length is defined,
the system will reserve space for the program. If the space is
larger than needed, it would be a waste. On the other hand, when
space is insufficient, data will be truncated to fit in.

» You may choose to create transaction file(s) on SD card.

> “Share file space with other applications” is enabled by
default, which means the same transaction file will not be
deleted after new program is downloaded. If disabled, the user
can get larger file system size.

Click “Configure” on the menu bar and select “Configure
Transaction Files”. In the pop-up window, check the box to enable
the use of a transaction file, and type the data length for each
enabled transaction file.

To define the DBF files (up to 5) to be used and the IDX files for
each DBF file.

» You may choose to create DBF file(s) on SD card.

> “Share file space with other applications” is enabled by
default, which means the same DBF file will not be deleted
after new program is downloaded. If disabled, the user can get
larger file system size.

Click “Configure” on the menu bar and select “Create DBF Files”.
In the pop-up window, type the total record length for each DBF
file and define the offset and length for the IDX files.

To configure the system parameters for barcode symbologies and
scanner performance.

Click “Configure” on the menu bar and select “Barcode Settings”.
In the pop-up window, check the box to enable the decodability of
the target mobile computer for a particular barcode symbology.
For the description of each barcode setting, please refer to
Appendix | & 1.

To configure the RFID settings including TAG types to be
read/written, start byte, and maximum length.

Click “Configure” on the menu bar and select “RFID Settings”. In
the pop-up window, select the checkboxes to enable the
decodability of the target mobile computer for a particular TAG
type and the related start byte/max. length.

Note: When exiting the BASIC Compiler or opening another file, if the current file has not
been changed but the barcode settings have been changed, the user will be asked
whether to save the current file or not.

14

Chapter 2 Using BASIC Compiler

2.4 COMPILE MENU

Three commands are provided on this menu.

L= Cipher-BASIC

Fil= Edit Configure iu:urnpile Help
0|=|u S |
Cownload, .. |
Command To Do...
Syntax » Function To check the syntax of the BASIC program.
checking

> Operation Click “Compile” on the menu bar and select “Syntax checking”. In
the case of any syntax error in the BASIC program, the “Output”
window pops up to show the line numbers and display the relevant
syntax error message.

Compile » Function To compile the BASIC program.
> Operation Click “Compile” on the menu bar and select “Compile”.
For the same function, click the “Compile” icon on the tool bar.

In the case of any syntax or compiling error, the “Output” window
pops up to display the error messages. If the compilation is
successfully done, the message “Build successfully, do you want to
download the program?” will be shown on the screen. Click the
[Yes] button if you want to download the program. (Refer to the
“Download” command for downloading operation.)

Download » Function To download a compiled BASIC program to the target mobile
computer.

> Operation Click “Compile” on the menu bar and select “Download”. In the
pop-up window, select the BASIC object file (.syn) to be
downloaded, and then click [Open]. Select the correct COM port
properties and then click [OK] to download.

Note that the associated system initialization file (.ini) has to be in
the same directory where the BASIC object file is; otherwise, the
default system settings will be downloaded instead.

15

CipherLab 8600 BASIC Programming Part |

2.5 HELP MENU

One command is provided on this menu.

L= Cipher-BASIC

File Edit Configure Compile BgEls

D[]e] @[a] o[ees. f

Command To Do...

About » Function To display the ownership and version of the program.

Note that the version information is necessary when tracing a
programming problem.

> Operation Click “Help” on the menu bar and select “About”. The pop-up
message box declares the ownership and version information of
the program.

16

Chapter 3
BASICS OF THE CIPHERLAB BASIC LANGUAGE

The chapter describes the basics of the CipherLab BASIC language.

IN THIS CHAPTER

1 T I 0] 51 = | K= T 17
3.2 Variables. ..o 18
3.3 EXpression and OPeratorsScceeveeeereieeeaaeeaaeeeaaeeaanns 21
3.4 Operator PreCedencCe ... 23
B E Labels . 23
3.6 SUDIOULINES. . .o 24
3.7 Programming Styleooiiiiiii e 26

3.1 CONSTANTS

Constants are the actual values that BASIC uses during execution. There are two types of
constants:

» String
» Numeric

3.1.1 STRING

A string constant is a sequence of up to 255 alphanumeric characters or symbols
enclosed in a pair of double quotation marks.

> “Hello”
> “$20,000.00”
) “12 students”

3.1.2 NUMERIC

Numeric constants include positive and negative numbers. Numeric constants in BASIC
cannot contain commas. There are three types of numeric constants that can be used in
the CipherLab BASIC Compiler:

> Integer Constants: Whole numbers between — 32,768 and + 32,767. No decimal
point.
» Real Number Constants: Positive or negative real numbers, that is, numbers that contain

a decimal point, such as 5.34 or — 10.0.

> Long Integer Constants: Whole numbers between — 2,147,483,648 and + 2,147,483,647.

17

CipherLab 8600 BASIC Programming Part |

3.2 VARIABLES

Variables are symbols used to represent data items, such as numerical values or
character strings that are used in a BASIC program. The value of a variable may be
assigned explicitly and can be changed during the execution of a program. Be aware that
the value of a variable is assumed to be undefined until a value is assigned to it.

3.2.1 VARIABLE NAMES AND DECLARATION CHARACTERS

The following are the rules for variable names and declaration characters:

» A variable name must begin with a letter (A to Z).
» The remaining characters can be letters, numbers, and/or underscores.
» The last character can be one of these type declaration characters:

% integer : 2 bytes (- 32,768 to + 32,767)

& long : 4 bytes (- 2,147,483,648 to + 2,147,483,647)
! real number : 4 bytes

$ string : 255 bytes

nothing (default) : 2 bytes (- 32,768 to + 32,767)

» The variable name cannot be a BASIC reserved word.
» Only 4 types of variables are supported. The maximum number of variables is 1,000.
» Variable names are not case-sensitive.

18

Chapter 3 Basics of the CipherLab BASIC Language

About Real Number

Every decimal integer can be exactly represented by a binary integer; however, this is not true for
fractional numbers. It is therefore very important to realize that any binary floating-point system
can represent only a finite number of floating-point values in exact form. All other values must be
approximated by the closest representable value. For example, even common decimal fractions,
such as decimal 0.0001, cannot be represented exactly in binary. (0.0001 is a repeating binary
fraction with a period of 104 bits!)

REM Floating-point error
fnuml11=99999.1
fnum21=99999.0

SET_PRECISION(4)
print fnuml!

REM : It prints “99999.1016” instead of “99999.1000".
print (fnum1!-fnum2!)*100

REM : It prints “10.1562” instead of “10”.

IF (fnuml!-fnum2! <> 0.1) THEN
print "Not equal"
ELSE
print "Equal"
END IF
REM : It prints “Not equal” for the comparison of “99999.1-99999.0” and “0.1”

We suggest not handling floating-point values directly but converting them to integers first. After
calculations, convert integers to real numbers if necessary. For example, in order to process the
expression of 1.82-1.8, you are advised to modify the expression to something like 182-180, and
then divide the result by 100 to get the actual result of 0.02.

When the floating-point values are displayed, printed, or used in calculations, they lose precision.
Instead of using floating-point, use integer or long to perform arithmetical or logical calculations. If
there is a need to display a fractional number on the screen, convert the integer or long to a string
and add the decimal point in the proper place. For example,

num1l&=999991
num2&=999990
num3&=(numl&-num2&)*100

print (numl& \ 10) ; "." ; (numl& MOD 10)
REM : It prints “99999.1"
print (num3& \ 10) ; "." ; (num3& MOD 10)

REM : It prints “10.0”

19

CipherLab 8600 BASIC Programming Part |

3.2.2 ARRAY VARIABLES

An

array is a group or table of values referenced by the same variable name. Each

element in an array is referenced by an array variable that is subscripted with an integer
or an integer expression.

»

20

An array variable name has as many dimensions as there are subscripts in the array.
For example,

A(12) : would reference a value in a one-dimension array.
T(2, 5) : would reference a value in a two-dimension array.
... and so on.
Each element in an array is referenced by an array variable that is subscripted with
an integer or an integer expression. For example,
DIM IntegerA%(20) : declares an integer array with 20 elements.
DIM StringB$(100) : declares a string array with 100 elements.
DIM RealC!(10) : declares an integer array with 10 elements.
DIM Th(5, 5) : declares a two-dimension integer array with 5x5 elements.
ArrayD(i+1, j) : The elements of an array are subscripted with an integer
expression.
The first element of an array is subscripted with 1.
In the CipherLab BASIC language, the maximum number of dimensions for an array

is 2, and, up to 32,767 elements per dimension is allowed while compiling.

Chapter 3 Basics of the CipherLab BASIC Language

3.3 EXPRESSION AND OPERATORS

An expression may be a string or numeric constant, or a variable, or it may be a
combination of constants and variables with operators to produce a single value.

Operators perform mathematical or logical operations. The operators provided by the

CipherLab BASIC Compiler may be divided into four categories, namely, Assignment
Operator, Arithmetic Operators, Relational Operators, and Logical Operators.

3.3.1 ASSIGNMENT OPERATOR

The CipherLab BASIC Compiler supports an assignment operator: “=". For example,

» Length% = 100
> PI! = 3.14159
» Company$ = “CipherLab Co., Ltd.”

3.3.2 ARITHMETIC OPERATOR

The arithmetic operators are:

Operator Operation Sample Expression
n Exponentiation A% = 973

- Negation (unary) A% = -B%

* Multiplication Al = BI * CI

\ Division (integer) A% = B! \ C!

/ Division (real) Al = Bl / C!

+ Addition A% = B% + C%

- Subtraction A% = B% - C%
MOD Modulo arithmetic A% = B% MOD C%

21

CipherLab 8600 BASIC Programming Part |

3.3.3 RELATIONAL OPERATOR

Relational operators are used to compare two values. The result of the comparison is
either “True” or “False”. This result may then be used to make a decision regarding
program flow.

Operator Operation Sample Expression
= Equality A% = B%

<=z Inequality A% < > B%

> < Inequality Al > < B!

> Greater than A% > Bl

< Less than Al < B!

> = Greater than or equal to A% > = B%

<= Less than or equal to A% < = B%

3.3.4 LOGICAL OPERATOR

Logical operators perform tests on multiple relations and Boolean operations. The logical
operator returns a bit-wise result which is either “True” (not zero) or “False” (zero). In an
expression, logical operations are performed after arithmetic and relational operations.

Operator Operation Sample Expression
NOT Logical negation IF NOT (A% = B%)
AND Logical and IF (A% = B%) AND (C% = D%)
OR Inclusive or IF (A% = B%) OR (C% = D%)
XOR Exclusive or IF (A% = B%) XOR (C% = D%)

22

Chapter 3 Basics of the CipherLab BASIC Language

3.4 OPERATOR PRECEDENCE

The precedence of BASIC operators affects the evaluation of operands in expressions.
Expressions with higher precedence operators are evaluated first. The precedence of
BASIC operators is listed below in the order of precedence from highest to lowest. Where
several operators appear together, they have equal precedence.

Order of Precedence Type of Operation Symbol

Highest Arithmetic — Exponentiation n

\Z Arithmetic — Multiplication, Division, Modulo *, \, /, MOD

\2 Arithmetic — Addition, Subtraction +, -

\Z Relational =, <>, >, <, >=, <=
\ Logical AND, NOT, OR, XOR
Lowest Assignment =

3.5 LABELS

Line labels are used to represent some special lines in the BASIC program. They can be
either integer numbers or character strings.

» A valid integer number for the line label is in the range of 1 to 32,767.

» A character string label can have up to 49 characters. (If the string label has more
than 49 characters, it will be truncated to 49 characters long.)

» The maximum number of labels is 1,000.

Note: The maximum compilable lines are 12,000.

A character string label that precedes a program line must have a colon “:” between the
label and the program line, but it is not necessary for an integer label. For example,

GOTO 100

100 PRINT “This is an integer label.”

GOTO Label2

Label2: PRINT “This is a character string label.”

23

CipherLab 8600 BASIC Programming Part |

3.6 SUBROUTINES

A subroutine is a set of instructions given a particular name or a line label. Users can
simplify their programming by breaking programs into smaller logical subroutines. A
subroutine will be executed when being called by a GOSUB command. For example,

ON KEY(1)GOSUB KeyF1

KeyF1:

PRINT “F1 is pressed.”
RETURN

The command RETURN marks the end of the subroutine and tells the processor to return
to the caller. A subroutine has to be appended at the end of the main BASIC program.

A subroutine can be defined with or without a pair of brackets. For example,

SUB Subroutinel()

PRINT “Subroutinel is executed.”

END SUB

SUB Subroutine2

PRINT “Subroutine2 is executed.”

END SUB

Since all the variables in the CipherLab BASIC program are treated as global variables,
passing arguments to subroutines is meaningless and enclosing arguments in the
brackets of the subroutines will lead to a syntax error while compiling.

A subroutine in BASIC can be recursive, which means it can call itself or other
subroutines that in turn call the first subroutine. The following sample program contains
a recursive subroutine — Factorial, to calculate the value of n! (“n factorial”).

PRINT “Please enter a number (1 — 13):”

INPUT N%

FactResult! = 1

Facth% = N%

GOSUB Factorial

PRINT N%, “! = ”, FactResult

24

Chapter 3

Loop:
GOTO Loop

Factorial:
IF Fact% < 1 THEN RETURN

FactResult! = FactResult! * Fact%
Facth = Facth -1

GOSUB Factorial

RETURN

Basics of the CipherLab BASIC Language

25

CipherLab 8600 BASIC Programming Part |

3.7 PROGRAMMING STYLE

The following are the guidelines used in writing programs in this manual, including the
sample program. These guidelines are recommended for program readability, but they
are not compulsory.

» Reserved words and symbolic constants appear in uppercase letters:
PRINT “Portable Terminal Demo Program”
BEEP(800, 30, 0, 5, 800, 15, 0, 5, 800, 15)
» Variable names are in lowercase with an initial capital letter. If variable names are

combined with more than one part, other capital letters may be used to make it
easier to read:

ProcessFlag% = 0
Temp$ = GET_RECORD$(3, 1)

» Line labels are used instead of line numbers:
ON READER(2) GOSUB GetSlotReader

26

Chapter 4
BASIC COMMANDS

This chapter provides detailed descriptions of the commands supported by the CipherLab
BASIC Compiler. In addition to the commands commonly used in traditional versions of
BASIC, a number of commands that deal with specific hardware features of the mobile
computers are supported. These commands are within the user’s BASIC programs to
perform a wide variety of tasks, such as communications, LCD, buzzer, scanner, file
manipulation, etc. They are categorized and described in this chapter by their functions
or the resources they work on.

Some commands are postfixed with a dollar sign, $, which means a string is returned
with the command. The compiler will accept these commands with or without the dollar
sign. However, the dollar sign will be postfixed to these commands in this manual and
the sample program.

The description for each BASIC command consists of five parts, Purpose, Syntax,
Remarks, Example and See Also, which are further described below.

Example of BASIC Command

Purpose The purpose of the command is briefly explained.
Syntax According to the following conventions, the command syntax is described.
CAPS : BASIC keywords are indicated by capital letters.

Italics : Items in Italics represent variable information to be supplied by user.

[] : Square brackets indicate optional parameters.
{} : Braces indicate an item may be repeated as many times as
necessary.

| : Vertical bar indicates alternative option.
Remarks Additional information regarding correct command usage is provided.

Example Various ways of using the statement are presented, including applicable and
unusual modes of operation.

See Also List of related commands is provided, if there is any.

Note: The mobile computers that support a specified BASIC command are listed to the
right of the title bar of the command.

27

CipherLab 8600 BASIC Programming Part |

IN THIS CHAPTER

4.1 General CommaNndsS.......coviiiiiiiiii i 29
4.2 Commands for Decision Structures..........ccovviiiiinnenann... 32
4.3 Commands for Looping Structuresc.cccvvviiieiiinnnnns. 37
4.4 Commands for String Processing....cccveeeviviieiiiienaaannanns 39
4.5 Commands for Event Trapping......cccovoieiiiiiiiiiiiiaaas 47
4.6 System COMMANASuiiiiieiii e e e aaeeaanns 61
4.7 Barcode Reader CommandsS........ccoeiiiiiiiiiiiiiiiiiiiieeeanns 76
4.8 RFID Reader Commandsooiiiiiiiiiiiiiiii e eeiieiieeeaanns 87
4.9 Keyboard Wedge CommandsSoooeiiiiiiiiiieiiieiiiaennns 91
4.10 Speaker ComMmandsooiiiiiiii s 99
0 I A =Y 0o ¢ [¢ =T o [101
4.12 Vibrator CommandsS.......cooooiiiiiiiiii i e 103
4.13 Real-Time Clock Commandscccoiiiiiiiiiiiiiiieannnn. 104
4.14 Battery CommMandS.....coveeeiiieiii e e e eaanens 107
4.15 Keypad COmMmMaNdS.....ccooeeiiiieiii e e e eeanens 108
4.16 LCD ComMMaAaNdS ..ccoiii i e 114
4 A o] g 132
4.18 Memory COmMmMAaNdS. .. .o i eeaaee e 138
4.19 File Manipulationooioiiii e 143
4.20 SD Card ... e 160

28

Chapter 4 BASIC Commands

4.1 GENERAL COMMANDS

This section describes commands that are not confined to any specific hardware features.

ABS

Purpose To return the absolute value of a numeric expression.

Syntax A = ABS(N)
“A” is a numeric variable to be assigned to the absolute value of a numeric
expression.
“N” is a numeric expression; it can be an integer or a real number.

Example TimeDifference®% = ABS(Timel% - Time2%)

BIT_OPERATOR

Purpose To perform bit-wise operations of integers or long integers.

Syntax C = BIT_OPERATOR(operator%o, A, B)

Remarks “C” is an integer (C%) or long integer variable (C&) to be assigned to the
result.

“operator%” is an integer variable, indicating the bit-wise operator. (see below)
“A” is an integer (A%) or long integer (A&) variable, indicating the 1% operand.

“B” is an integer (B%) or long integer (B&) variable, indicating the 2" operand.

OPERATOR% Meaning

1 bit-wise AND
2 bit-wise OR
3 bit-wise XOR
Example Result& = BIT_OPERATOR(2, 1100, 1000)
DIM
Purpose To specify the maximum value of variable subscripts and to allocate storage
accordingly.
Syntax DIM Array (range {,range}) {, Array(range {,range})}
Remarks “Array” is an array variable.
“range” can be an integer or an integer expression.
The DIM statement sets all the elements of the specified arrays to an initial
value of zero or empty string.
Note that the maximum allowable number of dimensions for an array is 2.
Example DIM A(10), B%(20), C$(30, 10)

29

CipherLab 8600 BASIC Programming Part |

GOSuUB
Purpose To call a specified subroutine.
Syntax GOSUB SubName|SubLabel
Remarks “SubName” is the name of a subroutine.
“SubLabel” is the line label of a subroutine.
Example GOSUB Dolt
GOSUB Done
SUB Dolt()
PRINT “Now I°ve done it!”
END SUB
Done:
PRINT “Now I°ve done it!”
RETURN
GOTO
Purpose To branch out unconditionally to a specified line number of line label from the
normal program sequence.
Syntax GOTO LineNumber|LineLabel
Remarks “LineNumber” is the integer number in front of a program line.
“LineLabel” is the string label of a program line.
Example Loop:
GOTO Loop
INT
Purpose To return the largest integer that is less than or equal to the given numeric
expression.
Syntax A% = INT(N)
Remarks “A%"” is an integer variable to be assigned to the resulit.
“N” is a numeric expression.
Example A% = INT(-2.86) < A% = -3
B% = INT(2.86) < B% = 2

30

Chapter 4 BASIC Commands

REM

Purpose To insert explanatory remarks in a program.

Syntax REM remark
‘ remark

Remarks “remark” may be any sequence of characters.
The BASIC compiler will ignore whatever follows REM or the apostrophe (‘) until
end of the line.

Example REM This is a comment. “ This is a comment.

SET_PRECISION

Purpose To set the precision of the decimal points for printing real number expressions.
Syntax SET_PRECISION(N%)
Remarks “N%” is a humeric expression in the range of O to 6.
The precision is set to two digits by default.
Example PI! = 3.14159
PRINT “P1 =", PI! “ result: Pl = 3.14 (by default)
SET_PRECISION(6)
PRINT “PI =", PI! “ result: Pl = 3.141590
SET_PRECISION(2)
PRINT “PI =", PI! “ result: Pl = 3.14
SGN
Purpose To return an indication of the mathematical sign (+ or -) of a given numeric
expression.
Syntax A% = SGN(N)
Remarks “A%"” is an integer variable to be assigned to the result.
A% Meaning
1 N=>0
(0] N=0
-1 N<O
“N” is a numeric expression.
Example A% = SGN(100) “C A% =1
B% = SGN(-1.5) “B% = -1

31

CipherLab 8600 BASIC Programming Part |

4.2 COMMANDS FOR DECISION STRUCTURES

Based on the value of an expression, decision structures cause a program to take one of
the following two actions:

) To execute one of several alternative statements within the decision structure itself.
» To branch to another part of the program outside the decision structure.

In CipherLab BASIC, decision-making is handled by the IF...THEN...[ELSE...][ENDIF]
and ON...GOSUB]|GOTO... statement. The IF...THEN...[ELSE...][ENDIF] statement
can be used anywhere the ON...GOSUB|GOTO... statement can be used. The major
difference between the two statements is that ON...GOSUB|GOTO... evaluates a single
expression, and then executes different statements or branches to different parts of the
program based on the result. On the contrary, a block IF...THEN...[ELSE...][ENDIF]
can evaluate completely different expressions.

Moreover, the expression given in the ON expression GOSUB|GOTO... statement must
be evaluated by a number in the range 1 to 255, while the expression in
IF...THEN...[ELSE...][ENDIF] statement can only be evaluated as a TRUE or FALSE
condition.

The IF...THEN...[ELSE...][ENDIF] statement can be nested up to 10 levels.

32

Chapter 4 BASIC Commands

IF ... THEN ... [ELSE...]

Purpose
Syntax

Remarks

Example

To provide a decision structure for single-line conditional execution.
IF condition THEN actionl [ELSE action2]

“condition” is a logical expression.

“action” is a BASIC statement.

IF Datal% > Data2% THEN

Temp% = Datal%

ELSE

Temp% = Data2%

IF ... THEN ... {ELSE IF...} [ELSE...] END IF

Purpose

Syntax

Remarks

Example

To provide a decision structure for multiple-line conditional execution.
IF condition1l THEN

Statementblockl1

{ELSE IF condition2 THEN

Statementblock2}

[ELSE

StatementblockN]

END IF

“condition” is a logical expression.

“Statementblock” can be multiple lines of BASIC statements.
IF LEFT$(Stringl$, 1) = “A” THEN

PRINT “Stringl is led by A.”

ELSE IF LEFT$(Stringl$, 1) = “B” THEN

PRINT “Stringl is led by B.”

ELSE

PRINT “Stringl is not led by A nor B.”

END IF

33

CipherLab 8600 BASIC Programming Part |

IF ... THEN ... END IF

Purpose To provide a decision structure for a conditional execution with multiple lines of
actions.

Syntax IF conditionl THEN
actionl

action2

END IF
Remarks “condition” is a logical expression.
“action” is a BASIC statement.
Example IF Datal% > Large% THEN
BEEP(800, 30)
Large% = Datal%
PRINT “Current Largest Number is ”, Datal%
END IF

34

Chapter 4 BASIC Commands

ON ... GOSUB ...

Purpose

Syntax

Remarks

Example

To call one of the several specified subroutines depending on the value of the
expression.

ON N GOSUB SubName|SubLabel {, SubName|SubLabel}

“N” is a numeric expression that is rounded to an integer. The value of N
determines which subroutine is to be called. If the value of N is O, or greater
than the number of routines listed, the interpreter will continue with the next
executable statement.

“SubName” is the name of a subroutine.

“SubLabel” is the line label of a subroutine.

PRINT “Input a number (1-9):~

INPUT Numb%

CLS

ON Num% GOSuB 100, 100, 100, 200, 200, 300, 400, 400, 400

100

PRINT “Number 1-3 is input.”
RETURN

200

PRINT “Number 4-5 is input.”
RETURN

300

PRINT “6 is input.”

RETURN

400

PRINT “Number 7-9 is input.”
RETURN

35

CipherLab 8600 BASIC Programming Part |

ON ... GOTO ...

Purpose To branch to one of several specified Line Labels depending on the value of an
expression.

Syntax ON N GOTO LineLabel {, LineLabel}

Remarks “N” is a numeric expression which is rounded to an integer. The value of N
determines which line label in the list will be used for branching. If the value N
is 0, or greater than the number of line labels listed, the interpreter will
continue with the next executable statement.

“LineLabel” is the string label of a program line.

Example PRINT “Input a number (1-9):~

36

INPUT Num%
CLS
ON Num% GOTO 100, 100, 200, 200, 300, 400, 400, 400

100

PRINT “Number 1-3 is input.”
GOTO 500

200

PRINT “Number 4-5 is input.”
GOTO 500

300

PRINT “6 is input.”

GOTO 500

400

PRINT “Number 7-9 is input.”
500

Chapter 4 BASIC Commands

4.3 COMMANDS FOR LOOPING STRUCTURES

Looping structures repeat a block of statements, either for a specified number of times or
until a certain condition is matched. In CipherLab BASIC, two kinds of looping structures,
FOR...NEXT and WHILE...WEND can be used. The command EXIT can be used as an
alternative to exit from both FOR...NEXT and WHILE...WEND loops.

Both FOR...NEXT and WHILE... WEND statements can be nested up to 10 levels.

EXIT
Purpose To provide an alternative exit for looping structures, such as FOR..NEXT and
WHILE..WEND statements.
Syntax EXIT
Remarks EXIT can appear anywhere within the loop statement.
Example DataCount% = TRANSACTION_COUNT
FOR Counter% = 1 TO DataCount%
Data$ = GET_TRANSACTION_DATA$(Counter%)
HostCommand$ = READ_COM$(1)
IF HostCommand$ = “STOP” THEN EXIT
WRITE_COM(1, Data$)
NEXT
FOR ... NEXT
Purpose To repeat the execution of a block of statements for a specified number of
times.
Syntax FOR N% = startvalue TO endvalue [STEP step]
[Statement Block]
NEXT [N%]
Remarks “N%” is an integer variable to be used as a loop counter.

“startvalue” is a numeric expression which is the initial value for the loop
counter.

“endvalue” is a numeric expression which is the final value for the loop counter.

“step” is a numeric expression to be used as an increment/decrement of the
loop counter The “step” is 1 by default.

If the loop counter ever reaches or beyond the endvalue, the program
execution continues to the statement following the NEXT statement. The
Statement block will be executed again otherwise.

Example DataCount% = TRANSACTION_COUNT
FOR Counter% = 1 TO DataCount%
Data$ = GET_TRANSACTION_DATA$(Counter%)
WRITE_COM(1, Data$)
NEXT

37

CipherLab 8600 BASIC Programming Part |

WHILE ... WEND

Purpose To repeat the execution of a block of statements while a certain condition is
TRUE.

Syntax WHILE condition
[Statement Block]
WEND

Remarks If the “condition” is true, loop statements are executed until the WEND
statement is encountered. Then the program execution returns to the WHILE
statement and checks the condition again. If it is still true, the process will be
repeated. Otherwise, the execution continues with the statement following the
WEND statement.

Example WHILE TRANSACTION_COUNT > O

38

Data$ = GET_TRANSACTION_DATA$(1)
WRITE_COM(1, Data$)

DEL_TRANSACT ION_DATA(1)

WEND

Chapter 4 BASIC Commands

4.4 COMMANDS FOR STRING PROCESSING

This section describes BASIC commands used to manipulate sequences of ASCII
characters known as strings. In CipherLab BASIC, strings are always variable length,
from null to a maximum of 250.

4.4.1 COMBINING STRINGS

Two strings can be combined with the plus operator “+”. The string following the plus
operator is appended to the string preceding the plus operator. For example,

Data$ = DATE$ + TIMES + EmployeelD$
SAVE_TRANSACTION(Data$)

4.4.2 COMPARING STRINGS

Two strings can be compared with the relational operators, see section 3.3.3.

A single character is greater than another character if its ASCII value is greater. For
example, the ASCII value of the letter “B” is greater than the ASCII value of the letter
“A”, so the expression “B” > “A” is true.

When comparing two strings, BASIC looks at the ASCIlI values of corresponding
characters. The first character where the two strings differ determines the alphabetical
order of the strings. For example, the strings “aaabaa” and “aaaaaaaa” are the same up
to the fourth character in each, “b” and “a”. Since the ASCII value of “b” is larger than
that of “a”, the expression “aaabaa” > “aaaaaaaa” is true.

If there is no difference between the corresponding characters of two strings and they
are the same length, then the two strings are equal. If there is no difference between the
corresponding characters of two strings, but one of the strings is longer, the longer string
is greater than the shorter string. For example, “abc” = “abc” and “aaaaaaaa” > “aaaaa”
are both true expressions.

Leading and trailing blank spaces are significant in comparing strings. For example, the

string “ abc” is less than the string “abc” since a blank space is less than an “a”; on the
other hand, the string “abc ” is greater than the string “abc”.

39

CipherLab 8600 BASIC Programming Part |

4.4.3 GETTING THE LENGTH OF A STRING

LEN
Purpose To return the length of a string.
Syntax A% = LEN(X$)
Remarks “A%” is an integer variable to be assigned to the result.
“X$” may be a string variable, string expression, or string constant.
Note that non-printing characters and blanks are counted.
Example Stringl$ = “abcde
A% = LEN(Stringl$) “A% = 6, including the blank
4.4.4 SEARCHING FOR STRINGS

Searching for a string inside another one is one of the most common string-processing
tasks. INSTR is provided for this task.

INSTR
Purpose To search if one string exists inside another one.
Syntax A% = INSTR([N%,] X$, Y$)
Remarks “A%"” is an integer variable to be assigned to the result.
“N%” is a numeric expression in the range of 1 to 255. Optional offset N sets
the position for starting the search.
“X$”, “Y$” may be a string variable, string expression, or string constant.
P If Y$ is found in X$, INSTR returns the position of the first occurrence of Y$
in X$, from the starting point.
> If N is larger than the length of X$ or if X$ is null, of if Y$ cannot be found,
INSTR returns O.
» If Y$ is null, INSTR returns N (or 1 if N is not specified).
Example Stringl$ = “11025John Thomas, Accounting Manager”

40

String2$ = *,”

EmployeeName$ = MID$(Stringl$, 6, INSTR(Stringl$, String2$) — 6)
“ the employee’s name starts at the sixth character

Chapter 4 BASIC Commands

4.4.5 RETRIEVING PART OF STRINGS

Several commands are provided to take strings apart by returning pieces of a string,
from the left side, or the right side, or the middle of the target string.

LEFTS$
Purpose To retrieve a given number of characters from the left side of the target string.
Syntax A$ = LEFT$(X$, N%o)
Remarks “A$” is a string variable to be assigned to the result.
“X$” may be a string variable, string expression, or string constant.
“N%” is a numeric expression in the range of O to 255.
» If N is larger than the length of X$, the entire string (X$) is returned.
» If N is zero, the null string (with length 0) is returned.
Example Stringl$ = “11025John Thomas, Accounting Manager”
EmployeelD$ = LEFT$(Stringl$, 5)
MID$
Purpose To retrieve a given number of characters from anywhere of the target string.
Syntax A$ = MID$(X$, N%I[, M%])
Remarks “A$” is a string variable to be assigned to the result.
“X$” may be a string variable, string expression, or string constant.
“N%” and “M%” are numeric expressions in the range of O to 255.
This command returns a string of length M characters from X$ beginning with
the Nth character.
> If M is omitted, or if there are fewer than M characters to the right of the
Nth character, all the characters beginning with the Nth character to the
rightmost are returned.
> If M is equal to zero, or if N is greater than the length of X$, then MID$
returns a null string.
Example Stringl$ = “11025John Thomas, Accounting Manager”

String2$ = “,”
EmployeeName$ = MID$(Stringl$, 6, INSTR(Stringl$, String2$) — 6)

the employee’s name starts at the sixth character

41

CipherLab 8600 BASIC Programming Part |

RIGHTS$
Purpose To retrieve a given number of characters from the right side of the target
string.
Syntax A$ = RIGHT$(X$, N%)
Remarks “A$” is a string variable to be assigned to the result.
“X$” may be a string variable, string expression, or string constant.
“N%” is a numeric expression in the range of O to 255.
» If N is larger than the length of X$, the entire string is returned.
» If N is zero, the null string (with length 0) is returned.
Example Stringl$ = “11025John Thomas, Accounting Manager”
String2$ = *,”
Title$ = RIGHT$(Stringl$, LEN(Stringl$) — INSTR(Stringl$, String2%))
TRIM_LEFTS$
Purpose To return a copy of a string with leading blank spaces stripped away.
Syntax A$ = TRIM_LEFT$(X$)
Remarks “A$” is a string variable to be assigned to the result.
“X$” is a string variable that may contain some space characters at the
beginning.
Example S1$ = TRIM_LEFT$(*“ Hello World!”) “ S1%$ = “Hello World!”

TRIM_RIGHTS$

Purpose
Syntax

Remarks

Example

42

To return a copy of a string with trailing blank spaces stripped away.
A$ = TRIM_RIGHT$(X$)
“A$” is a string variable to be assigned to the result.

“X$” is a string variable that may contain some space characters at the end.
S2% = TRIM_RIGHT$(“Hello World! ™) “ S2% = “Hello World!”

Chapter 4 BASIC Commands

4.4.6 CONVERTING FOR STRINGS

Several commands are available for converting strings to uppercase or lowercase letters,
as well as converting strings to numbers, and vice versa.

ASC

Purpose To return the decimal value for the ASCII code for the first character of a given
string.

Syntax A% = ASC(X$)

Remarks “A%"” is an integer variable to be assigned to the result.
“X$” is a string variable, consisting of characters.

Example A% = ASC(“John Thomas™) “ A% = 74

CHRS$

Purpose To return the character for a given ASCII value.

Syntax A$ = CHR$(N%)

Remarks “A$” is a string variable to be assigned to the result.
“N%” is a numeric expression in the range of O to 255.

Example A$ = CHR$(65) © A$ = “A”

HEX$

Purpose To return a string that represents the hexadecimal value (base 16) of the
decimal argument.

Syntax A$ = HEX$(N%)

Remarks “A$” is a string variable to be assigned to the result.
“N%” is a numeric expression in the range of O to 2,147,483,647; it is rounded
to an integer before HEX$(N%o) is evaluated.

Example A$ = HEX$(140) ‘A% = “8C”

LCASES$

Purpose To return a copy of a string in which all uppercase letters will be converted to
lowercase letters.

Syntax AS$ = LCASE$(X$)

Remarks “A$” is a string variable to be assigned to the result.
“X$” may be a string variable, string expression, or string constant.

Example Stringl$ = “John Thomas”

String2$ = LCASE$(Stringl$) ¢ String2%$ = “john Thomas™

43

CipherLab 8600 BASIC Programming Part |

OCTS$

Purpose To convert a decimal numeric expression to a string that represents the value
of the numeric expression in octal notation.

Syntax A$ = OCT$(N%)

Remarks “A$” is a string variable to be assigned to the result.
“N%” is a numeric expression in the range O to 2,147,483,647; it is rounded to
an integer before OCT$(N%) is evaluated.

Example A$ = OCT$(24) ‘A% = “30”

STR$

Purpose To convert a numeric expression to a string.

Syntax A$ = STRS(N%)

Remarks “A$” is a string variable to be assigned to the result.
“N%” is a numeric expression.

Example String$ = STR$(123)

UCASES$

Purpose To return a copy of a string in which all lowercase letters will be converted to
uppercase letters.

Syntax A$ = UCASES$S(XS$)

Remarks “A$” is a string variable to be assigned to the result.
“X$” may be a string variable, string expression, or string constant.

Example Stringl$ = “John Thomas™
String2%$ = UCASES$(Stringl$) “ String2$ = “JOHN THOMAS™

VAL

Purpose To return the numeric value of a string expression in long integer form.

Syntax A& = VALS(X$)

Remarks “A&” is an integer or long integer variable to be assigned to the result.
“X$” is a string that includes numeric characters. If the first character is not
numeric, this command returns O.
The command VAL will strip leading blanks, tabs, and linefeeds from the
argument string. The return numeric value is in the range of — 2,147,483,648
to 2,147,483,647.

Example ON HOUR_SHARP GOSUB OnHourAlarm

44

OnHourAlarm:

Hour% = VAL(LEFT$(TIMES, 2))

FOR Counter% = 1 TO Hour%
BEEP(800, 50)
WAIT(200)

NEXT

RETURN

Chapter 4 BASIC Commands

VALR

Purpose To convert a string expression to a real number.

Syntax Al = VALR(X$)

Remarks “Al” is a real number variable to be assigned to the result.
“X$” is a string that includes numeric characters.
The precision of the converted result is governed by the command
SET_PRECISION.

Example Al = VALR(*123.45”)

PRINT “A =, Al REM A = 123.45

45

CipherLab 8600 BASIC Programming Part |

4.4.7 CREATING STRINGS OF REPEATING CHARACTERS

STRINGS
Purpose To return a string containing the specified number of the requested character.
Syntax A$ = STRING$(N%, J%)
A$ = STRING$(N%, X$)
Remarks “A$” is a string variable to be assigned to the result.
“N%” is a numeric expression in the range of O to 255, indicating the number
of a character.
“J%” is a numeric expression in the range of 0 to 255, indicating the ASCII
code of a character.
“X$” may be a string variable or string constant.
Example IDX_LENGTH% = 20

46

Data$ = Name$ + STRINGS(IDX_LENGTH% - LEN(Name$),* ™)

ADD_RECORD$(1, Data$)
“ padding with space if the length of Name$ is less than IDX_LENGTH%

Chapter 4 BASIC Commands

4.5 COMMANDS FOR EVENT TRAPPING

An event is an action recognized by the mobile computer, such as a function keystroke
detected (KEY event), a signal received from the serial port (COM event), and so on.
There are two ways to detect the occurrence of an event and reroute the program control
to an appropriate subroutine: polling and trapping.

With event polling, the BASIC program explicitly checks for any event that happens at a
particular point in its execution. For example, the following statements cause the
program to loop back and forth until any key being pressed by user:

Loop:
KeyData$ = INKEY$

IF KeyData$ = “” THEN GOTO Loop

Polling is useful when the occurrence of an event is predictable in the flow of the program.
But if the time of the occurrence of an event is not predictable, trapping becomes the
better alternative because the program will not be paused by the looping statements. For
example, the following statements cause the program rerouting to the Key F1 subroutine
when the key F1 is pressed at anytime.

ON KEY(1) GOSUB Key F1

Key F1:

4.5.1 EVENT TRIGGERS

This section describes a variety of events that the CipherLab BASIC can trap as well as
the related commands. Below are 9 different events that can be trapped.

) COM Event: a signal is received from the COM port.

2) ESC Event: the ESC key is pressed.

3) HOUR_SHARP Event: the system time is on the hour.

4) KEY Event: a function key is pressed.

5) MINUTE_SHARP Event: the system time is on the minute.
6) READER Event: a barcode data is decoded.

7) TCPIP Event: any data packet is received via TCP/IP.

8) TIMER Event: a time-out condition of an activated timer.

9) POWER_ON Event: the POWER key is pressed again after powering off the mobile
computer.

a7

CipherLab 8600 BASIC Programming Part |

OFF ALL
Purpose To terminate all the event triggers.
Syntax OFF ALL
Remarks To resume the event trigger, call ON event GOSUB...
Example ON READER(1) GOSUB BcrData 1
ON READER(2) GOSUB BcrData_2
ON KEY(1) GOSUB KeyData_1
IF BACKUP_BATTERY < BATTERY_LOW% THEN
OFF ALL
BEEP(2000, 30)
CLS
PRINT “Backup Battery needs to be replaced!”
Loop:
GOTO Loop
END IF
OFF COM
Purpose To terminate “COM Event Trigger”.
Syntax OFF COM(N%b)
Remarks To resume the event trigger, call ON COM... GOSUB...
“N%” is an integer variable, indicating the COM port.
» N%=1,24,57
Example ON COM(1) GOSUB HostCommand

48

HostCommand_1:

OFF com(1) REM disable the trapping during data processing.

ON COM(1) GOSUB HostCommand
RETURN

Chapter 4 BASIC Commands

OFF ESC
Purpose To terminate “ESC Event Trigger”.
Syntax OFF ESC
Remarks To resume the event trigger, call ON ESC GOSUB...
Example ON ESC GOSUB Key Esc
Key_Esc:
OFF ESC

ON ESC GOSUB Key Esc

RETURN
OFF HOUR_SHARP
Purpose To terminate “HOUR_SHARP Event Trigger”.
Syntax OFF HOUR_SHARP
Remarks To resume the event trigger, call ON HOUR_SHARP GOSUB...
Example OFF HOUR_SHARP

49

CipherLab 8600 BASIC Programming Part |

OFF KEY

Purpose To terminate “KEY Event Trigger”.
Syntax OFF KEY(number%b)
Remarks To resume the event trigger, call ON KEY... GOSUB...

> When “number%” is an integer variable in the range of 1 to 12, it indicates
a function key (F1~F12) of the keypad.

P> Call OFF KEY(256+KeyCode%) to disable the event triggered by ON
KEY(256+KeyCode%o).

Example (1) REM Disable KEY_F1 event trigger
ON KEY(1) GOSUB KeyEvent
KeyEvent:
PRINT “KEY_F1 is pressed.”
OFF KEY(1)
RETURN

Example (2) REM Disable KEY_F13 event trigger
ON KEY(256+144) GOSUB KeyEvent
KeyEvent:
PRINT “KEY_F13 is pressed.”
OFF KEY(256+144)
RETURN

OFF MINUTE_SHARP

Purpose To terminate “MINUTE_SHARP Event Trigger”.

Syntax OFF MINUTE_SHARP

Remarks To resume the event trigger, call ON MINUTE_SHARP GOSUB...
Example OFF MINUTE_SHARP

50

Chapter 4 BASIC Commands

OFF READER

Purpose To terminate “READER Event Trigger”.

Syntax OFF READER(N%)

Remarks To resume the event trigger, call ON READER... GOSUB...
“N%” is an integer variable, indicating the reader port (usually 1 for mobile
computers).

Example ON READER(1) GOSUB BcrData 1
BcrData_1:

OFF READER(1)

BEEP(2000, 5)

Data$ = GET_READER_DATA$(1)
cLS

PRINT Data$

OFF TCPIP
Purpose To terminate “TCP/IP Event Trigger”.
Syntax OFF TCPIP
Remarks To resume the event trigger, call ON TCPIP GOSUB...
Example OFF TCPIP
OFF TIMER
Purpose To terminate “TIMER Event Trigger”.
Syntax OFF TIMER(N%)
Remarks To resume the event trigger, call ON TIMER... GOSUB...
“N%” is an integer variable in the range of 1 to 5, indicating the timer ID.
Example ON TIMER(1, 200) GOSUB ClearScreen “ TIMER(1) = 2 sec
ClearScreen:
OFF TIMER(1)
CLS
RETURN

51

CipherLab 8600 BASIC Programming Part |

ON COM ... GOSUB ...

Purpose To activate “COM Event Trigger”.
Syntax ON COM(N%) GOSUB SubName|SubLabel
Remarks “N%” is an integer variable, indicating the COM port.

P N%=1,2,4,57
“SubName|SubLabel” is the name or line label of a subroutine.

When data is received from the COM port, a specific subroutine will be
executed.

Example ON COM(1) GOSUB HostCommand

HostCommand_1:
OFF com(1)

ON COM(1) GOSUB HostCommand

RETURN
ON ESC GOSUB ...
Purpose To activate “ESC Event Trigger”.
Syntax ON ESC GOSUB SubName|SubLabel
Remarks “SubName|SubLabel” is the name or line label of a subroutine.

When the ESC key is pressed, a specific subroutine will be executed.
Example ON ESC GOSUB Key_Esc

Key_ Esc:
OFF ESC

ON ESC GOSUB Key Esc
RETURN

52

Chapter 4 BASIC Commands

ON HOUR_SHARP GOSUB ...

Purpose To activate “HOUR_SHARP Event Trigger”.
Syntax ON HOUR_SHARP GOSUB SubName|SubLabel
Remarks “SubName|SubLabel” is the name or line label of a subroutine.

When the system time is on the hour, a specific subroutine will be executed.
Example ON HOUR_SHARP GOSUB OnHourAlarm

OnHourAlarm:
CurrentTime$ = TIMES$
Hour% = VAL(LEFT$(CurrentTime$, 2))
FOR 1 = 1 TO Hour%
BEEP(800, 10, 0, 10)
WAIT(100)
NEXT
RETURN

53

CipherLab 8600 BASIC Programming Part |

ON KEY ... GOSUB ...

Purpose
Syntax

Remarks

Example (1)

Example (2)

54

To activate “KEY Event Trigger”.
ON KEY(number%s) GOSUB SubName|SubLabel
“number%” is an integer variable.

> When “number%” is an integer variable in the range of 1 to 12, it indicates
a function key (F1~F12) of the keypad.

> Call ON KEY(256+KeyCode%) to trigger a key event by key code. Any key
will do as long as its key code can be read by INKEY$. Refer to Key Code
Table.

“SubName|SubLabel” is the name or line label of a subroutine.
When a key is pressed, a specific subroutine will be executed.
ON KEY command allows a total of 12 key event trigger.

If more than 12 key events are required, you may reserve the last one for ON
KEY(256+255). When ON KEY(256+255) is called, a key press can be used to
trigger execution of a corresponding subroutine, as long as its key code is
found less than 0x20 or greater than Ox7F. Use INKEY$ and ASC to get the key
code, and parse key codes in the subroutine.

One key can be used to trigger execution of one subroutine. If a key is set as a
event trigger using ON KEY(256+KeyCode%), the same key cannot be used to
trigger the event of ON KEY(256+255). Likewise, when ON ESC has been
activated, the ESC key cannot be used to trigger the event of ON
KEY(256+255).

REM Set KEY_F1 and KEY_F2 as event trigger
ON KEY(1) GOSUB On_sShift
ON KEY(2) GOSUB Off _Shift

On_Shift:
Mode$ = “IN”
RETURN
Off_Shift:
Mode$ = “OUT”
RETURN
REM Set KEY_F13 as event trigger
ON KEY(256+144) GOSUB KeyEvent
KeyEvent:
PRINT “KEY_F13 is pressed.”
RETURN

Example (3)

Chapter 4

REM Parse key codes in subroutine
ON KEY(256+255) GOSUB KeyEvent
KeyEvent:
KeyData$ = INKEY$
A% = ASC(KeyData$)

IF A% = 144 THEN
PRINT “KEY_F13 is pressed.”
ELSE IF A% = 145 THEN
PRINT “KEY_F14 is pressed.”
END IF
RETURN

BASIC Commands

55

CipherLab 8600 BASIC Programming Part |

ON MINUTE_SHARP GOSUB ...

Purpose
Syntax

Remarks

Example

56

To activate “MINUTE_SHARP Event Trigger”.
ON MINUTE_SHARP GOSUB SubName|SubLabel
“SubName|SubLabel” is the name or line label of a subroutine.

When the system time is on the minute, a specific subroutine will be executed.

ON MINUTE_SHARP GOSUB CheckTime

CheckTime:
CurrentTime$ = TIMES$

Hour% = VAL(MID$(CurrentTime$, 3, 2))
IF Hour% = 30 THEN GOSUB HalfHourAlarm
RETURN

HalfHourAlarm:
BEEP(800, 30)
WAIT(100)
RETURN

Chapter 4 BASIC Commands

ON POWER_ON GOSUB ...

Purpose To activate “POWER_ON Event Trigger”.
Syntax ON POWER_ON GOSUB SubName|SubLabel
Remarks “SubName|SubLabel” is the name or line label of a subroutine.

When the POWER key is pressed again after powering off the mobile computer,
a specific subroutine will be executed.

Example ON POWER_ON GOSUB RESUME_ON
MAIN1:

LOCATE 8, 1
PWR_INDEX1&=PWR_INDEX&
PRINT “[POWER ON]’, PWR_INDEX1&

MAIN2:
IF PWR_INDEX& > PWR_INDEX1& THEN
GOTO MAIN1
END IF
GOTO MAIN2
RESUME_ON:
PWR_ INDEX&=PWR_INDEX&+1
WAIT(100)
RETURN
ON READER ... GOSUB ...
Purpose To activate “READER Event Trigger”.
Syntax ON READER(N%) GOSUB SubName|SubLabel
Remarks “N%” is an integer variable, indicating the reader port (usually 1 for mobile

computers).
“SubName|SubLabel” is the name or line label of a subroutine.

When data is received from the reader port, a specific subroutine will be
executed.

Example ON READER(1) GOSUB BcrbData_1

BcrData_1:
OFF READER(1)
BEEP(2000, 5)
Data$ = GET READER_DATA$(1)

57

CipherLab 8600 BASIC Programming Part |

ON TCPIP GOSUB...

Purpose
Syntax

Remarks

Example

To activate “TCP/IP Event Trigger”.
ON TCPIP GOSUB SubLabel
“SublLabel” is the line label of a subroutine.

When data is received from any TCP/IP connection or some error is taking
place, a specific subroutine will be executed.

» The GET_TCPIP_MESSAGE routine is used to identify the status of TCP/IP
connections.

ON TCPIP GOSUB TCPIP_Trigger

TCPIP_Trigger:
MSG% = GET_TCPIP_MESSAGE

ON TIMER

... GOSUB ...

Purpose
Syntax

Remarks

Example

58

To activate “TIMER Event Trigger”.
ON TIMER(N%b, duration%) GOSUB SubName|SubLabel

“N%” is an integer variable in the range of 1 to 5, indicating the ordinal
number of timer.

“duration%” is an integer variable, indicating a specified period of time in units
of 10 ms.

“SubName|SubLabel” is the name or line label of a subroutine.

When the system runs out of the time duration specified by user, a specific
subroutine will be executed. Up to five timers can be set in a BASIC program.
Be sure the timer IDs are different. Otherwise, the latter created timer will
overwrite the former one.

ON TIMER(1, 200) GOSUB ClearScreen “ TIMER(1) = 2 sec

ClearScreen:
OFF TIMER(1)
CLS

RETURN

Chapter 4 BASIC Commands

4.5.2 LOCK AND UNLOCK

Event trapping could be nested. If the event triggers are activated in a BASIC program, it
is possible that an event-driven subroutine can be interrupted by any upcoming events.
Normally, the new event would be processed first.

In some cases where we don’t want the event-driven subroutine to be interrupted by
other events, the commands LOCK and UNLOCK can be used to hold off new events.

LOCK

Purpose
Syntax

Remarks

Example

To hold all the activated event triggers until they are released by UNLOCK.
LOCK

This command can prevent nesting of event triggers. All the activated event
triggers will be disabled until UNLOCK is called.

In the example below, the BASIC program can trap the READER(1) and
READER(2) events and reroute to the subroutines BcrData_1 and BcrData_2
respectively. In BecrData_1, the command LOCK disables all the activated event
triggers so that the subroutine BcrData_1 will not be interrupted by a new
upcoming READER(1) and/or READER(2) event. On the other hand, since LOCK
is not called in BcrData_2, any new coming READER(1) and READER(2) event
will interrupt the ongoing BcrData_2, and therefore, may affect the expected
results.

ON READER(1) GOSUB BcrData 1
ON READER(2) GOSUB BcrData 2

BcrData_1:

LOCK

BEEP(2000, 5)

Data$ = GET_READER_DATA$(1)
GOSUB AddNewData

UNLOCK

RETURN

BcrData_2:

BEEP(2000, 5)

Data$ = GET_READER_DATA$(2)
GOSUB AddNewData

RETURN

59

CipherLab 8600 BASIC Programming Part |

UNLOCK

Purpose To release all the activated event triggers held by LOCK.
Syntax UNLOCK

Remarks This command resumes event processing.

Example Refer to the command LOCK.

60

Chapter 4 BASIC Commands

4.6 SYSTEM COMMANDS

This section describes the system commands, such as the commands to change the CPU
running speed, get the device ID, and/or restart the system.

4.6.1 GENERAL

AUTO_OFF

Purpose To set a specified period of time for the system to automatically shut down
user’s program as long as there is no operation in the interval.

Syntax AUTO_OFF(N%)

Remarks “N%” is an integer variable, indicating a specified period of time in units of 1
second.
» If the time interval is set to zero, this function will be disabled.

Example AUTO_OFF(30) “ auto off after 30 seconds
AUTO_OFF(0) “ disable the AUTO OFF function

See Also POWER_ON, RESTART

61

CipherLab 8600 BASIC Programming Part |

IOPIN_STATUS

Purpose
Syntax

Remarks

62

To check the 1/0 pin status.
A% = IOPIN_STATUS(N%o)

“A%” is an integer variable to be assigned to the resulit.

“N%” is an integer variable, indicating the item to be checked with.

N% | Meaning
0 It always return 1. (A% = 1)
1 To check whether data transmission is successful or not.
> A% = the length of string, including delimiters.
2 To check whether the mobile computer is connected via cradle, cable

or 5V DC adapter.

> A% = A value that sums up values of each item. Each bit indicates

a certain item as shown below.

Bit | Value @ Item
00— | Ox00 NO_CRADLE
3
0x04 CHARGER_CRADLE
4 0x00 RS232 CABLE
DISCONNECTED
0x10 RS232_CABLE_
CONNECTED
5 | 0x00 | USB_CABLE_
DISCONNECTED
0x20 | USB_CABLE_
CONNECTED
6 0x00 ADAPTER
DISCONNECTED
0x40 ADAPTER
_CONNECTED

Remarks
Not seated in any cradle.

Seated in the Charging &
Communication Cradle.

RS-232 cable is not connected.
RS-232 cable is connected.

USB cable is not connected.

USB cable is connected.

5V DC
connected.

adapter is not

5V DC adapter is connected.

Chapter 4 BASIC Commands

3 To get the status when mass storage is in use.

> A% = A value that indicates the current status.

A% | Meaning

0 USB is disconnected.
1 USB is connected and device is not being accessed.
3 USB is connected and device is being accessed.

4 To get the charging status.

> A% = A value that indicates the current status.

A% ' Meaning

0 No connection to external power.
1 Battery is being charged.

2 Battery charging done.

3 Charging error occurs.

Example U% = IOPIN_STATUS(2)

¢ *** Detect Cradle ***

V% = BIT_OPERATOR(1, U%, 15)

“ Get the value of Bit 0~3 to check if any cradle detected
IF V% = 2 THEN “ Check if Ethernet cradle

PRINT “Seated in Ethernet cradle”

ENDIF

¢ *** Check if USB cable connected ***

V% = BIT_OPERATOR(1, U%, 32)

“ Get the value of Bit 5 to check if USB cable detected
IF V% = 32 THEN “ 32 = 0x20

PRINT “USB cable connected”

ENDIF

63

CipherLab 8600 BASIC Programming Part |

MENU

Purpose To create a menu.
Syntax A% = MENU(Item$)
Remarks “A%” is an integer variable to be assigned to the result.

» It is the ordinal number of the menu item that user has selected. If the
ESC key is pressed to cancel the operation, it will return O.

“Item$” is a string variable, indicating the menu items that are separated and
ended by carriage return (CR, 0x0d).

This command lets user select an item by using (1) the UP/DOWN arrow keys,
and then the ENTER key to confirm the selection, or (2) the shortcut keys.

Note that the following features —

» Shortcut key: & (It is restricted to only one character next to &.)
> Menu title: @ (The title can be put anywhere in the menu string.)
» Display the Up/Down arrow icons
4

A menu can have up to 32 items. Each item can be a string with maximum
length of 24 bytes. If the total characters of the string exceed the
maximum characters allowed in one line per screen, the rest will be
displayed in a next line.

Example Below is an illustrative example:
MENU_STR$ = “1 INFORMATION” + CHR$(13)

MENU_STR$ = MENU_STR$ + “@SYSTEM MENU” + CHR$(13)
MENU_STR$ = MENU_STR$ + “&2 SETTINGS” + CHR$(13)
MENU_STR$ = MENU_STR$ + “&3 TESTS” + CHR$(13)
MENU_STR$ = MENU_STR$ + “4 LOAD PROGRAM” + CHR$(13)
MENU_STR$ = MENU_STR$ + “&5 BLUETOOTH MENU” + CHR$(13)

S% = MENU(MENU_STR$)

Title

Short keys:
1,2and 4

Up/Down arrows

64

Chapter 4 BASIC Commands

POWER_ON
Purpose To determine whether to restart or resume the program upon powering on.
Syntax POWER_ON(N%)
Remarks “N%” can be O or 1.
N% Meaning
0 Program Resume
1 Program Restart
Example POWER_ON(0O) “ set to resume mode
See Also AUTO_OFF, RESTART
RESTART
Purpose To restart the system.
Syntax RESTART
Remarks This command will terminate the execution of the BASIC program and restart
it.
Example HostCommand$ = READ_COM$(1)
IF HostCommand$ = “RESTART” THEN
RESTART
ELSE
See Also AUTO_OFF, POWER_ON

65

CipherLab 8600 BASIC Programming Part |

4.6.2 SYSTEM INFORMATION

Being one category of system information, the device type is displayed as “xxxx”; each is
a digit from 0 to 9. The last digit (“0”) is reserved for future use. Refer to
SYSTEM_INFORMATIONS(8) below.

Digits X X X X
Types Reader Module Wireless Module RFID & GPS module |Reserved
8600 Series
4-digit Device Type Meaning
1%t digit OXxX No reader
Ixxx CCD scan engine
2XXX Laser scan engine
3XXX 2D scan engine
2" digit XOXX N/A
X5xx Bluetooth module only
X8XX 802.11b/g/n + Bluetooth
3" digit XX1x RFID
XX2X GPS
XX3X RFID + GPS
4™ digit XXX0 Reserved
5% digit XXXX-0 29-key
XXXX-1 39-key
DEVICE_ID$
Purpose To get the serial number of the mobile computer.
Syntax A$ = DEVICE_ID$
Remarks This command is to be replaced by SYSTEM_INFORMATIONS.

“A$” is a string variable to be assigned to the result. That is, a string for the
serial number will be returned.

» Such information can be checked in System Menu | Information | S/N.
Example PRINT ““S/N:”, DEVICE_ID$

66

Chapter 4 BASIC Commands

GET_TARGET_MACHINES$

Purpose To get the model number of the target mobile computer.

Syntax A$ = GET_TARGET_MACHINES$

Remarks “A$” is a string variable to be assigned to the result. That is, a string for the
model number will be returned.

Example A$ = GET_TARGET_MACHINE

IF (A$ = “8600") THEN

ELSE IF (A$ = “8630”) THEN
ELSE IF (A$ = “8660”) THEN

END IF

67

CipherLab 8600 BASIC Programming Part |

SYSTEM_INFORMATIONS

Purpose
Syntax

Remarks

To collect information on components, either hardware or software.
A$ = SYSTEM_INFORMATIONS$(index%o)

“A$” is a string variable to be assigned to the result.

“index%” is an integer variable, indicating a specific category of information.

Index%

Meaning

© 00 N O g A~ W DN P

=
o

11
12
21
22
23
24
25
26
27

Library Version

BASIC Version

Kernel Version
Hardware Version
Manufacture Date
Serial Number
Original Serial Number
Device Type

RFID Version

Buzzer Volume

USB Charge Current N°®
Bootloader version

GPS Status°'®

GPS Speed

GPS Latitude

GPS Longitude

GPS SNR

GPS Satellite Number
GPS Altitude

: C library
: BASIC runtime

: modular components in hardware

: A$ = “Mute”, “Low”, “Medium” or
“High”

: A$ = “500 mA” or “100 mA” or “O mA”

: relative speed, km/h

s ddmm.mmmmN or ddmm.mmmm$S

: dddmm.mmmmE or dddmm.mmmmw
: Signal to Noise ratio, average (dB)

: Number of satellites found

I meters

Note that it only allows users to change the USB charging current via System
Menu. The information on GPS speed, latitude, longitude and altitude is not
confirmed until the return value of GPS status becomes 1.

Example

PRINT “Library :”,LIBVER$

68

LIBVER$ = SYSTEM_INFORMATION$(1)

Chapter 4 BASIC Commands

VERSION
Purpose To write version information to the system.
Syntax VERSION(AS$)
Remarks “A$” is a string variable, indicating program name, date, etc.
This command is used to write information of program version to the system.
» Such information can be checked in System Menu | Information | USR.
Note that this command must be on the first line of the program; otherwise, it
will be ignored. The string for version information cannot exceed 15 characters.
Example VERSION(““CipherBASIC 2.0)

69

CipherLab 8600 BASIC Programming Part |

4.6.3 SECURITY

SYSTEM_PASSWORD

Purpose To set the password protection for entering System Menu.
Syntax SYSTEM_PASSWORD(A$)

Remarks “A$” is a string constant or variable, representing the password.
Example SYSTEM_PASSWORD(*“12345")

70

Chapter 4 BASIC Commands

4.6.4 PROGRAM MANIPULATION

These two functions can be used as the basis of remote update of BASIC applications.
Programs can be downloaded to the file system and activated immediately or later.

DOWNLOAD_BASIC

Purpose To read a new BASIC program from a specific COM port and store it to a
specified transaction file.

Syntax A% = DOWNLOAD_BASIC(file%o, port%)

Remarks “A%"” is an integer variable to be assigned to the result.

Value | Meaning

0 Success

-1 Invalid transaction file

-2 Invalid COM port

-3 No response from COM port

-4 Fail to read version of BASIC program
-5 Fail to read program header (.ini)

-6 Fail to read object file (.syn)

-7 Write error — insufficient space in SRAM.

“file%” is an integer variable, indicating which transaction file in the file
system the program is saved to.

Value | Meaning

1-6 Application program saved to file system

18 Application program saved to SRAM, which is not accessible to
users but can only be used with UPDATE_BASIC(18)

“port%” is an integer variable, indicating which COM port the program is to be
read from.

Value | Meaning

1 RS-232
2 Bluetooth
5 USB Virtual COM

Note that the transaction file to receive the program must be empty or cleared
out, for example, using EMPTY_TRANSACTION_EX(). Use SET_COM() and
SET_COM_TYPE() to set the COM port properties. To start with the download
process on your computer, run the download utility ProgLoad.exe or go to
Compile | Download via the BASIC Compiler.

Example Error_Code% = DOWNLOAD_BASIC(6, 1)

71

CipherLab 8600 BASIC Programming Part |

UPDATE_BASIC

Purpose To have a BASIC program become the active program.
Syntax A% = UPDATE_BASIC(file%)
Remarks “A%” is an integer variable to be assigned to the result.

Value | Meaning

-1 Invalid file number

-2 Invalid file format

-8 No free space in flash before writing
-9 Fail to read program header (.ini)

-10"°*® | Fail to read object file (.syn)
-11 RAM size cannot fit.

-12N°* | Fail to write new program into flash due to insufficient space,
illegal address or the sector of flash cannot be erased.

-13"°* | Fail to write program header after new program written into flash
-14 Cannot find file on SD card

-15 Cannot read file on SD card

-16 File on SD card with filename length over 64 bytes

Note that it may not return the error code if the original BASIC program has
been overwritten.

“file%” is an integer variable, indicating from which transaction file the
program is copied to the active area in flash memory. If successful, it will
restart automatically.

Value | Meaning

1-6 Application program saved in file system
» Source file will be kept unless you erase it manually.

18 Application program (.tkn) saved in SRAM via FTP or
DOWNLOAD_BASIC(18)

» Source file will be removed after execution.
19 Runtime program (.bin) saved in SRAM via FTP

> Source file will be removed after execution, but file system
will be kept.

20—~39 | Application program (.tkn, or .syn, .ini) saved on SD card
» A .tkn file takes the first priority.

» Source file will be kept after execution.

72

Chapter 4 BASIC Commands

40~59 Runtime program(.bin or .shx) saved on SD card
> A .bin file takes the first priority.
» Source file and file system will be kept after execution.

» If the source file is on SD card, “file%” must be set in a specific range, as
shown above. You must follow these steps to make it active —

Step 1: = Rename the program by prefixing a number in the specific
range. For example,

EchoTest.ini -> 25EchoTest.ini
EchoTest.syn -> 25EchoTest.syn

Step 2: Copy the header file and object file to the specified
directory “\Program” on SD card.

Step 3: | Call UPDATE_BASIC(25). System will search the file whose
name starts with “25” in the directory “\Program”.

Note: (1) If a file “25*.tkn” is found on SD card, it takes
the first priority. That is, “25*.tkn” will become the active
program. (2) When more than one file whose filename is
prefixed with the same number, for example, 40x.bin and
40a.bin, their entry in the file allocation table (FAT) decides
which one takes the first priority. That is, only the first
entry found works for UPDATE_BASIC(40).

Example Error_Code% = UPDATE_BASIC(3)

73

CipherLab 8600 BASIC Programming Part |

BASIC PROGRAM - FORMAT OF TRANSACTION FILE

A complete BASIC program consists of one header file (.ini) and one object file (.syn). To
ensure the execution of a BASIC program, both files must be stored correctly into one
transaction file. Examples are provided below illustrating the correct format and incorrect
format of transaction file.

Warning: The header file (.ini) is 256 bytes and must be saved before saving the
object file.
» It is acceptable that the header file is followed by the object file in the same record.

74

Correct format!
< 255 bytes >

Record 1 Header File (256 bytes)

Object File (.syn)

-Recr:rrd n+1 ‘

It is acceptable that the header file takes one record, and the object file starts from a
new record. Refer to the drawings below, space occurs with the object file is allowed
in several cases.

Correct format!
< 255 bytes
Record 1 Header File (256 bytes)

Object File (.syn) |

Record n+1

Record 1 Header File (256 bytes)

Obiject File (.syn)

Record n+1 ‘

Record 1 Header File (256 bytes)
. Object File (.syn)

;?ecord n+1 ‘ ‘

Record 1 Header File (256 bytes)
’ Obiject File (.syn)

Record n+1

4

Chapter 4 BASIC Commands

It is acceptable that the header file is split into multiple records and the last part is
followed by the object file.

Correct format!

< 255 bytes >
Record 1 Header File (156 bytes) .

- (100 bytes) Object File (.syn)

;R’ecord n+1 |

Header File (216 bytes)
(40 bytes) Object File (.syn)

Record 1

: ‘ |:> Non-fixed length
Record n+1 ‘

It is unacceptable that the header file is saved after the object file or split into
multiple parts in the same record. Space occurs at the beginning or in the middle of a
record is considered wrong format.

< 255 bytes €

Record 1
Object File (.syn)
Header File (156 bytes)
Record n+1 Header File (100 bytes)
Wrong format!
Record 1 Header File (60 bytes) (196 bytes)
Object File (.syn)
F‘ecord n+1 ‘

It is unacceptable that the object file is split into multiple parts in the same record.
Space occurs at the beginning or in the middle of a record is considered wrong
format.

< 255 bytes £ >

Record 1 Header File (60 bytes) Wrong format! (196 bytes)

Wrong format!
Object File (.syn) ‘

Record n+1 | Wrong forr{’lat! ‘

Header File (256 bytes)

Record 1

Wrong format!

Object File (.syn) I

Record n+1

75

CipherLab 8600 BASIC Programming Part |

4.7 BARCODE READER COMMANDS

The CipherLab mobile computers are able to read barcode data from the reader ports.
This section describes the BASIC commands that are related to the reader ports of the
mobile computers.

Commands for triggering the READER event: OFF READER(1), ON READER(1)
GOSUB...

The barcode reader module provides options for a number of scan engines as listed
below.

Scan Engine: “v” means supported

1D CCD (linear imager)
Standard Laser
Long Range Laser (LR) -—-
Extra Long Range Laser (ELR) -
2D 2D imager v

4.7.1 GENERAL

To enable barcode decoding capability in the system, the first thing is that the scanner
port must be initialized by calling ENABLE READER(). After the scanner port is
initialized, call ON READER(1) GOSUB to trigger the barcode decoding event.

» For CCD or Laser scan engine, the barcode decoding routines consist of 5 functions:
ENABLE READER(),GET_READER_DATA$(), DISABLE READER(), OFF
READER(1), ON READER(1) GOSUB.

» For 2D or (Extra) Long Range Laser scan engine, it is necessary to enable new
settings by calling READER_CONFIG() before decoding.

Note: (1) When 2D barcode data exceeds 255 bytes, it cannot be received completely in
a string. You need to repeatedly call GET_READER_DATAS$() to receive data until
there is no data left out.

(2) Because the length of each record in the DBF file is limited to 250 bytes, this
index sequential file structure cannot be applied when dealing with 2D data that is
longer than 250 bytes.

DISABLE READER

Purpose To disable the reader ports of the mobile computer.
Syntax DISABLE READER(N9%b)
Remarks “N%” is an integer variable, indicating the reader port.

» N% = 1 for mobile computers.
Example DISABLE READER(1)

76

Chapter 4 BASIC Commands

ENABLE READER

Purpose To enable the reader ports of the mobile computer.
Syntax ENABLE READER(N%b)
Remarks “N%” is an integer variable, indicating the reader port.

» N% = 1 for mobile computers.

The reader ports are disabled by default. To enable barcode decoding function,
the reader ports have to be enabled by ENABLE READER.

Example ENABLE READER(1)
ON READER(1) GOSUB Bcr_1

Ber_1:
Data$ = GET_READER_DATA$(1)
RETURN

GET_READER_DATAS$

Purpose To get data that is read from a specified reader port.
Syntax A$ = GET_READER_DATA$(N%)
Remarks “A$” is a string variable to be assigned to the result.

“N%” is an integer variable, indicating t the reader port.
» N% = 1 for mobile computers.

Usually, ON READER GOSUB... is used to trap the event when the data is
transmitted to the mobile computer through the reader port, and then
GET_READER_DATAS$ is used in a subroutine to get the reader data.

Example ENABLE READER(1)
ON READER(1) GOSUB Bcr_1

Ber_1:
Data$ = GET_READER_DATA$(1)
RETURN

READER_CONFIG

Purpose To enable new settings on the scan engine after calling READER_SETTING().
Syntax READER_CONFIG
Remarks For new reader settings to take effect on any of the following readers, it is

necessary to call this routine.
» 2D scan engine

Example See sample code below.

77

CipherLab 8600 BASIC Programming Part |

SAMPLE CODE
READER_SETTING(5, 0)
READER_SETTING(132, 0)
READER_CONFIG “ enable the new settings for 2D or
“ Long Range Laser engines
ENABLE READER(1) “ enable the reader
ON READER(1) GOSUB G_Reader Data
CLS
GOSUB MainScreen
MainLoop:
Data$ = GET_READER_DATA$(1)
IF LEN(Data$) <> 0O THEN “ check if there are valid data
GOSUB MainScreen
END IF
WAIT(10) “ for power saving

GOTO MainLoop

MainScreen:
CLS
CodeLEN% = LEN(Data$)
PRINT “ Reader Testing”
PRINT “CODE TYPE:”
PRINT CodeType$
PRINT “Code Length:”", CodeLEN%
PRINT “Count:”, Count%

PRINT “Data:”, Data$

GetMoreData:
Data$ = GET_READER_DATA$(1) “ check if there are more data
IF LEN(Data$) <> 0 THEN “ 1f yes, meaning totally the data

78

Chapter 4 BASIC Commands

is longer than 255 bytes
“ (must be 2D code)

CodeLEN% = CodeLEN%+LEN(Data$)

PRINT Data$

GOTO GetMoreData

END IF

LOCATE 4, 1

PRINT “Code Length:"", CodeLEN%

RETURN

G_Reader_Data:
BEEP(4000, 8)
Count% = Count% + 1
IF CODE_TYPE = 65 THEN

CodeType$ = “Code 397

ELSE IF CODE_TYPE 66 THEN
CodeType$ = “lItalian Pharmacode”

ELSE IF CODE_TYPE

67 THEN
CodeType$ = “CIP 39~

ELSE IF CODE_TYPE

68 THEN

CodeType$ = “Industrial 25~

ELSE IF CODE_TYPE 69 THEN
CodeType$ = “Interleave 25~

ELSE IF CODE_TYPE

70 THEN
CodeType$ = “Matrix 25~
ELSE IF CODE_TYPE = 71 THEN

CodeType$ = “Codabar”

79

CipherLab 8600 BASIC Programming Part |

80

ELSE IF CODE_TYPE = 72 THEN

ELSE

ELSE

ELSE

ELSE

ELSE

ELSE

ELSE

ELSE

ELSE

ELSE

ELSE

ELSE

ELSE

ELSE

CodeType$ =
IF CODE_TYPE
CodeType$ =
IF CODE_TYPE
CodeType$ =

IF CODE_TYPE

“Code 93~

= 73 THEN

“Code 128~

= 74 THEN

“UPCE”

= 75 THEN

CodeType$ = “UPCE with Addon 2”

IF CODE_TYPE

= 76 THEN

CodeType$ = “UPCE with Addon 5”

IF CODE_TYPE
CodeType$ =
IF CODE_TYPE
CodeType$ =
IF CODE_TYPE
CodeType$ =
IF CODE_TYPE
CodeType$ =
IF CODE_TYPE
CodeType$ =
IF CODE_TYPE
CodeType$ =
IF CODE_TYPE
CodeType$ =
IF CODE_TYPE
CodeType$ =
IF CODE_TYPE
CodeType$ =

IF CODE_TYPE

77 THEN

“EAN 8~

78 THEN

“EAN 8 with Addon

79 THEN

“EAN 8 with Addon

= 80 THEN

“EAN13”

81 THEN

“EAN13 with Addon

82 THEN

“EAN13 with Addon
= 83 THEN

“MS1”

= 84 THEN

“Plessey”

85 THEN

“EAN 128~

= 87 THEN

o7

57

o7

57

Chapter 4 BASIC Commands

CodeType$ = “GTIN”
ELSE IF CODE_TYPE = 90 THEN

CodeType$ = “Telepen”
ELSE IF CODE_TYPE = 91 THEN

CodeType$ = “RSS”
END IF

RETURN

81

CipherLab 8600 BASIC Programming Part |

4.7.2 CODE TYPE

The following tables list the values of the CodeType variable.

CodeType Table I:

DEC ASCII Symbology Supported by Scan Engine
63 ? Coop 25 CCD, Laser
64 @ ISBT 128 CCD, Laser
65 A Code 39 CCD, Laser
66 B Italian Pharmacode CCD, Laser
67 C CIP 39 (French Pharmacode) CCD, Laser
68 D Industrial 25 CCD, Laser
69 E Interleaved 25 CCD, Laser
70 F Matrix 25 CCD, Laser
71 G Codabar (NW7) CCD, Laser
72 H Code 93 CCD, Laser
73 1 Code 128 CCD, Laser
74 J UPC-EO / UPC-E1 CCD, Laser
75 K UPC-E with Addon 2 CCD, Laser
76 L UPC-E with Addon 5 CCD, Laser
77 M EAN-8 CCD, Laser
78 N EAN-8 with Addon 2 CCD, Laser
79 (@] EAN-8 with Addon 5 CCD, Laser
80 P EAN-13 7/ UPC-A CCD, Laser
81 Q EAN-13 with Addon 2 CCD, Laser
82 R EAN-13 with Addon 5 CCD, Laser
83 S MSI CCD, Laser
84 T Plessey CCD, Laser
85 U GS1-128 (EAN-128) CCD, Laser
86 \Y, Reserved -—-

87 W Reserved ---

88 X Reserved ---

89 Y Reserved -—-

90 Z Telepen CCD, Laser
91 [GS1 DataBar (RSS) CCD, Laser
92 \ Reserved -—-

93 1 Reserved -

82

CodeType Table 11I:

Chapter 4 BASIC Commands

DEC ASCII Symbology Supported by Scan Engine
47 / Composite_CC_A 2D
55 7 Composite_CC_B 2D
64 @ ISBT 128 2D
65 A Code 39 2D
66 B Code 32 (Italian Pharmacode) 2D
67 C N/A —
68 D N/A -
69 E Interleaved 25 2D
70 F Matrix 25 2D
71 G Codabar (NW7) 2D
72 H Code 93 2D
73 | Code 128 2D
74 J UPC-EO 2D
75 K UPC-E with Addon 2 2D
76 L UPC-E with Addon 5 2D
77 M EAN-8 2D
78 N EAN-8 with Addon 2 2D
79 O EAN-8 with Addon 5 2D
80 P EAN-13 2D
81 Q EAN-13 with Addon 2 2D
82 R EAN-13 with Addon 5 2D
83 S MSI 2D
84 T N/A -
85 U GS1-128 (EAN-128) 2D
86 \% Reserved ---
87 W Reserved ---
88 X Reserved ---
89 Y Reserved ---
90 z Reserved -—-
91 [GS1 DataBar Omnidirectional (RSS-14) 2D
92 \ GS1 DataBar Limited (RSS Limited) 2D
93 1 GS1 DataBar Expanded (RSS Expanded) 2D
94 ~ UPC-A 2D
95 UPC-A Addon 2 2D

83

CipherLab 8600 BASIC Programming Part |

96 ‘ UPC-A Addon 5 2D
97 a UPC-E1 2D
98 b UPC-E1 Addon 2 2D
99 c UPC-E1 Addon 5 2D
100 d TLC-39 (TCIF Linked Code 39) 2D
101 e Trioptic (Code 39) 2D
102 f Bookland (EAN) 2D
103 g Code 11 2D
104 h Code 39 Full ASCII 2D
105 i IATANC® (25) 2D
106 j Industrial 25 (Discrete 25) 2D
107 k PDF417 2D
108 | MicroPDF417 2D
109 m Data Matrix 2D
110 n Maxicode 2D
111 o QR Code 2D
112 p US Postnet 2D
113 q US Planet 2D
114 r UK Postal 2D
115 S Japan Postal 2D
116 t Australian Postal 2D
117 u Dutch Postal 2D
118 \Y; Composite Code 2D

Composite_CC_C

119 w Macro PDF417 2D
120 X Macro MicroPDF417 2D
121 y Chinese 25 2D
122 z Aztec 2D
123 { MicroQR 2D
124 | USPS 4CB / One Code / Intelligent Mail 2D
125 } UPU FICS Postal 2D
126 ~ Coupon Code 2D

Note: IATA stands for International Air Transport Association, and this barcode type is
used on flight tickets.

84

Chapter 4 BASIC Commands

CODE_TYPE
Purpose To get the type of symbology being decoded upon a successful scan.
Syntax A% = CODE_TYPE
Remarks “A%” is an integer variable to be assigned to the result.
Refer to the above table for code types.
Example
CheckCodeType:
IF CODE_TYPE = 65 THEN
BcrType$ = “Code 39~
ELSE IF CODE_TYPE = 66 THEN
BcrType$ = “ltalian Pharmacode”
END IF
PRINT “Code Type:”, BcrType$
RETURN
See Also GET_READER_SETTING, READER_SETTING

85

CipherLab 8600 BASIC Programming Part |

4.7.3 READER SETTINGS

Refer to Appendix | for two tables that describe the details of the reader settings.

» Table I is for the use of CCD or Laser scan engine.
» Table Il is for the use of 2D scan engine.

Note: For 2D scan engine, it is necessary to call READER_CONFIG() to enable new
settings.

For specific symbology parameters, refer to Appendix Il; for scanner parameters, refer to
Appendix I11.

GET_READER_SETTING

Purpose To get the value of a specified parameter of the barcode settings.
Syntax A% = GET_READER_SETTING(N%)
Remarks “A%"” is an integer variable to be assigned to the result.

“N%” is an integer variable, indicating the index number of a parameter. (cf.
READER_SETTING)

Example Settingl% = GET_READER_SETTING(1)
IF Settingl% = 1 THEN
PRINT “Code 39 readability is enabled.”
ELSE
PRINT “Code 39 readability is disabled.”
END IF

See Also CODE_TYPE,

READER_SETTING

Purpose To set the value of a specified parameter of the barcode settings.
Syntax READER_SETTING(N1%, N2%)
Remarks “N1%"” is an integer variable, indicating the index number of a parameter.

“N2%” is an integer variable, indicating the value to be set to a parameter.

A set of parameters called barcode settings determines how the decoder will
decode the barcode data. The initial values of the barcode settings are given by
the Barcode Settings Window of the BASIC Compiler. The user can reset the
values by calling READER_SETTING in a BASIC program.

Refer to Appendix I, 11, and 111l for details of the settings.
Example READER_SETTING(1, 1) “ Code 39 readability is enabled.
See Also CODE_TYPE, READER_CONFIG

86

Chapter 4 BASIC Commands

4.8 RFID READER COMMANDS

The mobile computer allows an optional RFID reader that can coexist with the barcode
reader, if there is any. The RFID reader supports read/write operations, which depend on

the tags you are using. The supported labels include 1SO 15693, Icode®, I1SO 14443A,
and 1SO 14443B.

Warning: Before programming, you should study the specifications of RFID tags.

Currently, the performance of many tags has been confirmed, and the results are listed
below.

Tag Type UID only Read Page Write Page
TAG_MifarelS0O14443A

Mifare Standard 1K
Mifare Standard 4K
Mifare Ultralight
Mifare DESFire
Mifare S50
SLE44R35
SLE66R35
TAG_SR176

NN N N N RN

SRIX 4K

SR176
TAG_1S015693
ICODE SLI
SRF55V02P
SRF55V02S
SRF55V10P

AN A N NN

Tl Tag-it HF-1
TAG__Icode
ICODE v v 4

Note: These are the results found with RFID module version 1.0 (v for features

supported), and you may use SYSTEM_INFORMATIONS$(9) to find out version
information.

87

CipherLab 8600 BASIC Programming Part |

4.8.1 VIRTUAL COM

The algorithm for programming the RFID reader simply follows the commands related to
COM ports. The virtual COM port for RFID is defined as COM4. Thus,

» OPEN_COM@4) : enable the RFID module

» CLOSE_COM(4) : disable the RFID module

» A$ = READ_COMS$(4) : read data from an RFID tag
> WRITE_COM(4) : write data to an RFID tag

» ON COM(4) GOSUB... and OFF COM(4)

4.8.2 DATA FORMAT

Before reading and writing operations, the parameters of RFID must be specified. The
settings of format are described below.

Parameter Description
TagType& Bit 31 ~ 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
Reserved I1SO SR176 1ISO Icode Tagit 1SO
14443B 14443A 15693
start%o The starting byte of data for the read/write operation.
MaxLen%o » Read: The maximum data length (1~255).

0 refers to reading UID data only.

> Write: Reserved (Any integer value is acceptable.)

When an RFID tag is read, the data string includes Tag Type, UID, and Data. The data
format for READ_COMS$(4) is as follows.

Byte 1 Byte 2 ~ 18 Byte 19 ~ xx
Tag Type V' TAG_1S015693
T TAG_Tagit
‘r TAG_Icode Tag UID (SN) Data
‘M’ TAG_MifarelSO14443A
‘S’ TAG_SR176
'z TAG_1S014443B

88

Chapter 4 BASIC Commands

SET_RFID_READ

Purpose
Syntax
Remarks

Example

See Also

To set the reading parameters of RFID.

SET_RFID_READ(TagType&, start%, MaxLen%o)

The RFID reader cannot read until the parameters are specified.

SET_RFID_READ(1, 0, 20) ‘ read tag type 1SO 15693
“ starting from byte 0 of data
“ data length 20 bytes

A$ = READ_COM$(4)

CLOSE_COM, OPEN_COM, READ_COM$, WRITE_COM

SET_RFID_WRITE

Purpose
Syntax
Remarks

Example

See Also

To set the writing parameters of RFID.

SET_RFID_WRITE(TagType&, start%, MaxLen%o)

The RFID reader cannot write until the parameters are specified.

OPEN_COM(4)

SET_RFID_WRITE(63, 6, 32) “ all supported tag types are enabled
“ write starting from byte 6 of data
“ any value for data length

WRITE_COM(4, W_STR$)

CLOSE_COM, OPEN_COM, READ_COMS$, WRITE_COM

89

CipherLab 8600 BASIC Programming Part |

4.8.3 AUTHENTICATION

GET_RFID_KEY

Purpose
Syntax

Remarks

Example

To get the security key of some specific tags.
A$ = GET_RFID_KEY(TagType %)
“A$” is a string variable to be assigned to the result.

“TagType%” is an integer variable, indicating a specific tag type that the
security key is applied to.

This function is used to get the security key for some specific tags, such as
Mifare Standard 1K/4K and SLE66R35 tags.

MKEY$ = GET_RFID_KEY(4) " get security key for MifarelS014443A tags

SET_RFID_KEY

Purpose
Syntax

Remarks

Example

90

To set the security key of some specific tags.

SET_RFID_KEY(TagType%, KeyString$, KeyType%o)

“TagType%” is an integer variable, indicating a specific tag type that the
security key is applied to.

TAGTYPE% Meaning

TAG_1S015693

TAG_Tagit

TAG_Icode
TAG_MifarelSO14443A
TAG_SR176
TAG_1S014443B

o a0 b~ WIN P

“KeyString$” is a string variable, indicating the security key you set.

“KeyType%?” is an integer variable, indicating a specific key type.

KEYTYPE% Meaning
1 KEYA (Key A)

2 KEYB (Key B)

This function is used to set security key for some specific tags, such as Mifare
Standard 1K/4K and SLE66R35 tags.

SET_RFID_KEY(4, 111111111111, 1) " set security key (KEY A) for
Mifare 1S014443A tags

Chapter 4 BASIC Commands

4.9 KEYBOARD WEDGE COMMANDS

You may use Bluetooth HID or USB HID for the wedge application. Refer to the table
below and Part 11: Appendix 1V Examples.

Wedge Options Related Functions

Bluetooth HID or USB HID SET_WEDGE
OPEN_COM
SET_COM
SET_COM_TYPE
CLOSE_COM
GET_NET_STATUS
WRITE_COM

WRITE_COM() is governed by a set of parameters called WedgeSetting$. The
command SET_WEDGE is used to configure these parameters.

4.9.1 DEFINITION OF THE WEDGESETTING ARRAY

WedgeSetting$ is a 3-element character array passed to SET_WEDGE to describe the
characteristics of the keyboard wedge interface. In a BASIC program, WedgeSetting$ can
be defined as follows.

WedgeSetting$ = Wedge_1% + Wedge 2$ + Wedge_3%

The functions of the parameters Wedge_1$, Wedge_2$%, and Wedge_3$ are described in
the following subsections.

Parameter Bit Description
Wedge_ 1% 7-0 KBD / Terminal Type
Wedge_2% 7 1: Enable capital lock auto-detection
0: Disable capital lock auto-detection
Wedge_2$ 6 1: Capital lock on
0: Capital lock off

91

CipherLab 8600 BASIC Programming Part |

Wedge_2$ 5 1: Ignore alphabets’ case
0: Alphabets are case-sensitive
Wedge_2$ 4-3 00: Normal
10: Digits at lower position
11: Digits at upper position
Wedge_2$ 2-1 00: Normal
10: Capital lock keyboard
11: Shift lock keyboard
Wedge_2$ 0 1: Use numeric keypad to transmit digits
0: Use alpha-numeric key to transmit digits

Wedge_3$% 7-0 Inter-character delay

1ST ELEMENT: KBD / TERMINAL TYPE

The first element determines which type of keyboard wedge is applied. The possible
value is listed as follows.

Value Terminal Type Value Terminal Type

0 Null (Data Not Transmitted) 21 PS55 002-81, 003-81

1 PCAT (US) 22 PS55 002-2, 003-2

2 PCAT (FR) 23 PS55 002-82, 003-82

3 PCAT (GR) 24 PS55 002-3, 003-3

4 PCAT (IT) 25 PS55 002-8A, 003-8A

5 PCAT (SV) 26 IBM 3477 TYPE 4 (Japanese)
6 PCAT (NO) 27 PS2-30

7 PCAT (UK) 28 Memorex Telex 122 Keys

8 PCAT (BE) 29 PCXT

O
N

9

10
11
12
13
14
15
16
17
18
19
20

For example,

PCAT (SP)
PCAT (PO)
PS55 A01-1
PS55 A01-2
PS55 A01-3
PS55 001-1
PS55 001-81
PS55 001-2
PS55 001-82
PS55 001-3
PS55 001-8A

PS55 002-1, 003-1

if the terminal

Chapter 4 BASIC Commands

30 IBM 5550
31 NEC 5200
32 NEC 9800
33 DEC VT220, 320, 420
34 Macintosh (ADB)
35 Hitachi Elles
36 Wyse Enhance KBD (US)
37 NEC Astra
38 Unisys TO-300
39 Televideo 965
40 ADDS 1010
type is PCAT (US), then the first element of the

WedgeSetting can be defined as follows.

Wedge_1$ = CHR$(1)

2ND ELEMENT

Capital Lock Auto-Detection

Keyboard Type

Capital Lock Auto-Detection

PCAT (all

available

languages), PS2-30, PS55,
or Memorex Telex

None of the above

Enabled Disabled

The command WRITE_COM can The command WRITE_COM will
automatically detect the capital transmit alphabets according to
lock status of keyboard. That is, it the setting of the capital lock
will ignore the capital lock status status.

setting and perform
auto-detection when transmitting
data.

The command WRITE_COM will transmit the alphabets according
to the setting of the capital lock status, even though the
auto-detection setting is enabled.

> To enable “Capital Lock Auto-Detection”, add 128 to the value of the second element of
WedgeSetting$ (Wedge_29%).

93

CipherLab 8600 BASIC Programming Part |

Capital Lock Status Setting

In order to send alphabets with correct case (upper or lower case), the command WRITE_COM
must know the capital lock status of keyboard when transmitting data.

Incorrect capital lock setting will result in different letter case (for example, ‘A’ becomes 'a’, and
'a’ becomes 'A").

> To set “Capital Lock ON”, add 64 to the value of the second element of WedgeSetting$
(Wedge_2%).

Alphabets' Case

The setting of this bit affects the way the command WRITE_COM transmits alphabets.
WRITE_COM can transmit alphabets according to their original case (case-sensitive) or just
ignore it. If ignoring case is selected, it will always transmit alphabets without adding shift key.

> To set *“Ignore Alphabets Case”, add 32 to the value of the second element of
WedgeSetting$ (Wedge_29%$).

Digits' Position

This setting can force the command WRITE_COM to treat the position of the digit keys on the
keyboard differently. If this setting is set to upper, it will add shift key when transmitting digits.

This setting will be effective only when the keyboard type selected is PCAT (all available
language), PS2-30, PS55, or Memorex Telex. However, if the user chooses to send digits using
numeric keypad, this setting is meaningless.

> To set “Lower Position”, add 16 to the value of the second element of WedgeSetting$
(Wedge_29%).

> To set “Upper Position”, add 24 to the value of the second element of WedgeSetting$
(Wedge_29%).

Shift / Capital Lock Keyboard

This setting can force the command WRITE_COM to treat the keyboard type to be a shift lock
keyboard or a capital lock keyboard. This setting will be effective only when the keyboard type
selected is PCAT (all available languages), PS2-30, PS55, or Memorex Telex.

> To set “Capital Lock”, add 4 to the value of the second element of WedgeSetting$
(Wedge_2%).

> To set “Shift Lock”, add 6 to the value of the second element of WedgeSetting$ (Wedge_2%).

Digit Transmission

This setting instructs the command WRITE_COM which group of keys is used to transmit digits,
whether to use the digit keys on top of the alphabetic keys or use the digit keys on the numeric
keypad.

> To set “Use Numeric Keypad to Transmit Digits”, add 2 to the value of the second element of
WedgeSetting$ (Wedge_2$).

Note: DO NOT set “Digits’ Position” and “Shift/Capital Lock Keyboard” unless you are
certain to do so.

94

Chapter 4 BASIC Commands

3RD ELEMENT: INTER-CHARACTER DELAY

A millisecond inter-character delay, in the range of O to 255, can be added before
transmitting each character. This is used to provide some response time for PC to
process keyboard input.

For example, to set the inter-character delay to be 10 millisecond, the third element of
WedgeSetting$ can be defined as,

Wedge_3% = CHR$(10)

95

CipherLab 8600 BASIC Programming Part |

4.9.2 COMPOSITION OF OUTPUT STRING

The mapping of the keyboard wedge characters is as listed below. Each character in the
output string is translated by this table when the command WRITE_COM transmits
data.

00 10 20 30 40 50 60 70 80
0 F2 SP 0 @ P N P ©
1 INS F3 ! 1 A Q a q @
2 DLT F4 2 B R b r @)
3 Home F5 #H 3 o S c s ©)
4 End F6 $ 4 D T d t @
5 Up F7 % 5 E u e u ®
6 Down F8 & 6 F \% f \% ®
7 Left FO ' 7 G W g w @
8 BS F10 (8 H X h X
9 HT F11) 9 | Y i y ©)
A LF F12 * J Z J z
B Right ESC + K [k {
(03 PgUp Exec , < L \ | |
D CR CR* - = M] m 3}
E PgDn) > N ~ n ~
F F1 / ? O _ o] Dly ENTER*

Note: (1) Dly: Delay 100 millisecond
(2) ©~®@: Digits of numeric keypad
(3) CR*/ENTER*: ENTER key on the numeric keypad

The command WRITE_COM can not only transmit simple characters as shown above,
but also provide a way to transmit combination key status, or even direct scan codes.
This is done by inserting some special command codes in the output string. A command
code is a character whose value is between 0xCO and OxFF.

0OxCO : Indicates that the next character is to be treated as scan code. Transmit it as it is,
no translation required.

OxCO | Ox01 : Send next character with Shift key.
OxCO | Ox02 : Send next character with Left Ctrl key.

OxCO | Ox04 : Send next character with Left Alt key.

96

Chapter 4 BASIC Commands

OxCO | Ox08 : Send next character with Right Ctrl key.
OxCO | 0x10 : Send next character with Right Alt key.
OxCO | Ox20 : Clear all combination status key after sending the next character.

For example, to send [A] [Ctri-Insert] [5] [scan code 0x29] [Tab] [2] [Shift-Ctrl-A] [B]
[Alt-1] [Alt-2-Break] [Alt-1] [Alt-3], the following characters are inserted into the string
supplied to the command WRITE_COM.

0x41, 0xC2, 0x01, 0x35, 0xCO, 0x29, 0x09, 0x32, OxC3, 0x41, 0x42, OxC4, 0x31
OxE4, 0x32, OxC4, 0x31, 0xC4, 0x33

Note: (1) The scan code 0x29 is actually a space for PCAT, Alt-12 is a form feed
character, and Alt-13 is an Enter.
(2) The break after Alt-12 is necessary, if omitted the characters will be treated as
Alt-1213 instead of Alt-12 and Alt-13.

The following instructions can be called in the BASIC program to send the above string
through the keyboard wedge interface.

Data_1$ = CHR$(65) + CHR$(194) + CHR$(1) + CHR$(53) + CHR$(192) + CHR$(41)
Data_2$ = CHR$(9) + CHR$(50) + CHR$(195) + CHR$(65) + CHR$(66)

Data_3$ = CHR$(196) + CHR$(49) + CHR$(228) + CHR$(50) + CHR$(196) + CHR$(49)
Data_4$ = CHR$(196) + CHR$(51)

DataString$ = Data_1$ + Data 2$ + Data 3$ + Data 4%

WRITE_COM(DataString$)

97

CipherLab 8600 BASIC Programming Part |

SET_WEDGE

Purpose To configure the keyboard wedge interface.

Syntax SET_WEDGE(WedgeSetting$)

Remarks “WedgeSetting$” is a 3-element character array describing the characteristics
of the keyboard wedge interface.

Example

98

Wedge_1$ = CHR$(1) " terminal type: PCAT(US)
Wedge_2$ = CHR$(1)

" auto-detection disabled, capital lock off, case-sensitive

" use numeric keypad to transmit digits

Wedge_3%$ = CHR$(5) " inter-char-delay: 5 ms
WedgeSetting$ = Wedge_1$ + Wedge_ 2% + Wedge_3%
SET_WEDGE(WedgeSetting$)

WRITE_COM(DataString$)

Chapter 4 BASIC Commands

4.10 SPEAKER COMMANDS

This section describes the commands related to the speaker.

BEEP
Purpose To specify a beep sequence of how a speaker works.
Syntax BEEP(freq%o, duration% {, freq%, duration%})
Remarks “freq%” is an integer variable, indicating the value of beep frequency (Hz).
Value Meaning
freq% = O Suggested frequency for the buzzer ranges from 1 kHz to
6 kHz. If the value of the frequency is O, the buzzer will
not sound during the time duration.
freq% =-1 The speaker volume can be configured by setting freq% to
“-1” and duration% to 0~3.
duration% @ Speaker Volume
0] Set the volume level to “Mute”
1 Set the volume level to “Low”
2 Set the volume level to “Medium”
3 Set the volume level to “High”
freq% =-2 A .wav file on SD card can be specified by setting freq% to
“-2” and duration% to file number. See the example
below.
“duration%” is an integer variable, indicating the value of beep duration,
which is specified in units of 10 milliseconds.
> Up to eight frequency-duration pairs can be assigned in a beep sequence.
Example ON READER(1) GOSUB BcrDATA_1
BcrData_1:
BEEP(-1, 1) " Set Low
BEEP(2000, 10, O, 10, 2000, 10)
BEEP(-2, 1) " Play A:\WAW\1l.wav
RETURN

99

CipherLab 8600 BASIC Programming Part |

STOP BEEP

Purpose To terminate the beep sequence.

Syntax STOP BEEP

Remarks The STOP BEEP statement terminates the beep immediately if there is a beep
sequence in progress.

Example BEEP (2000, 0)

ON KEY(1) GOSUB StopBeep

PRINT “Press F1 to stop the buzzer.”
StopBeep:

STOP BEEP

RETURN

100

Chapter 4 BASIC Commands

4.11 LED COMMAND

In general, the dual-color LED indicator or indicators on the mobile computer are used to
indicate the system status, such as good read or bad read, error occurrence, etc.

LED

Purpose To specify the LED lighting behavior.

Syntax LED(number%, mode%, duration%o)

Remarks “number%” is a positive integer variable, indicating the LED color.

Value | Meaning

1 Red LED light in use.
2 Green LED light in use.
3 Blue LED light in use for the 2" LED, which is used for wireless

communications by default.

4 Green LED light in use for the 2"d LED, which is used for wireless
communications by default.

“mode%” is an integer variable, indicating the digital output mode. The values
of the mode and their interpretation are listed below.

Value | Meaning

0 Turn off the LED for the specific duration and then turn on.
1 Turn on the LED for the specific duration and then turn off.
2 Flash the LED for a specific duration repeatedly. The flashing

period equals 2Xduration.
240 Default setting for the 2" LED on the mobile computer.

> For LED_BLUE, it is set to indicate Bluetooth status: flashing
quickly for “waiting for connection” or “connecting”; flashing
slowly for “connected”.

> For LED_GREEN2, it is set to indicate Wi-Fi status: flashing
quickly for “waiting for connection” or “connecting”; flashing
slowly for “connected”.

241 Used for the 2" LED on the mobile computer if user control is
desired. See example below.

LED(3, 240, 0) " user get control of Blue LED
LED(3, 241, 0) * return the control to system

“duration%” is an integer variable, specifying a period of time in units of 10
milliseconds.

> A value of O in this argument will keep the LED in the specific state
indefinitely.

101

CipherLab 8600 BASIC Programming Part |

Example ON READER(1) GOSUB BcrData_1

BcrData_1:
BEEP(2000, 5)
LED(2, 1, 5)
Data$ = GET READER_DATA$(1)

102

" GOOD READ LED

Chapter 4 BASIC Commands

4.12 VIBRATOR COMMANDS

This section describes the command related to the vibrator.

VIBRATOR
Purpose To set the vibrator.
Syntax VIBRATOR(mode%)
Remarks “mode%” is an integer variable, indicating the state of the vibrator.
Value | Meaning
0 Vibrator off
1 Vibrator on
Once the vibrator is enabled by VIBRATOR(1), the mobile computer will start
vibrating until the vibrator is set off by VIBRATOR(0).
Example VIBRATOR(1) " turn on the vibrator

103

CipherLab 8600 BASIC Programming Part |

4.13 REAL-TIME CLOCK COMMANDS

This section describes the commands related to the calendar and timer.

The system date and time are maintained by the calendar chip, and they can be retrieved
from or set to the calendar chip by the commands DATE$ and TIMES$. A backup
rechargeable Lithium battery keeps the calendar chip running even when the power is
turned off.

» The calendar chip automatically handles the leap year. The year field set to the
calendar chip must be in four-digit format.

Commands for triggering the HOUR_SHARP event, the MINUTE_SHARP event, and the
TIMER event: OFF HOUR_SHARP, OFF MINUTE_SHARP, OFF TIMER, ON
HOUR_SHARP GOSUB..., ON MINUTE_SHARP GOSUB..., and ON TIMER GOSUB...

Up to five timers can be set by the command ON TIMER... GOSUB... for the “TIMER
Event Trigger”.

Note: The system time variable TIMER is maintained by CPU timers and has nothing to
do with this calendar chip. Accuracy of this time variable depends on the CPU clock
and is not suitable for precise time manipulation. Besides, it is reset to O upon
powering up (as a cold start).

DATES$

Purpose To set or to get the current date.

Syntax DATES$ = X$
Y$ = DATES$

Remarks DATES$ = X$, to set the current date.
“X$” is a string variable in the form of “yyyymmdd”.
Y$ = DATES$, to get the current date, in the form of “yyyymmdd”.
“Y$” is a string variable to be assigned to the result.
Note that the BASIC Compiler and its Run-time Engines do not check the
format and contents of the string to be assigned to DATES. User is obliged to
check the format and contents.

Example DATE$ = “20000103” " set the system date to 2000/01/03
Today$ = DATE$ " assign the current date to Today$
PRINT Today$ " Today$ = 20000103~

104

Chapter 4 BASIC Commands

DAY_OF WEEK

Purpose To get the day of the week.
Syntax A% = DAY_OF_WEEK
Remarks “A%” is an integer variable to be assigned to the result.

A value of 1 to 7 represents Monday to Sunday respectively.
Example ON DAY_OF_WEEK GOSUB 100, 200, 300, 400, 500, 600, 700
100
PRINT “Today is Monday.”

RETURN
200
PRINT “Today is Tuesday.”
RETURN
300
PRINT “Today is Wednesday.”
RETURN
TIMES$
Purpose To set or to get the current time.
Syntax TIMES$ = X$
Y$ = TIMES$
Remarks TIME$ = X$, to set the current time.
“X$” is a string variable in the form of “hhmmss”.
Y$ = TIMES$, to get the current time, in the form of “hhmmss”.
“Y$” is a string variable to be assigned to the result.
The BASIC Compiler and its Run-time Engines do not check the format and
contents of the string to be assigned to TIMES$. User is obliged to check the
format and contents.
Example TIME$ = “112500~ " set the system time to 11:25:00
CurrentTime$ = TIMES$ " assign the current to CurrentTime$
PRINT CurrentTime$ " CurrentTime$ = “112500”

105

CipherLab 8600 BASIC Programming Part |

TIMER
Purpose To return the number of seconds elapsed since the mobile computer is powered
on.
Syntax A& = TIMER
Remarks “A&” is a long integer variable to be assigned to the result.
Note that the TIMER is a read-only function. The system timer cannot be set by
this command.
Example StartTime& = TIMER
Loop:
IF EndTime& <> TIMER THEN
EndTime& = TIMER
TimerElapsed& = EndTime& - StartTime&
CLS
PRINT TimerElapsedé&
IF TimerElapsed& > 100 THEN GOTO NextStep
END IF
GOTO Loop
NextStep:
See Also OFF TIMER, ON TIMER GOSUB...
WAIT
Purpose To put the system on hold for a specified duration. In the interval, the system
will be running in a rather low power consumption mode.
Syntax WAIT(duration%b)
Remarks “duration%” is a positive integer variable, indicating the time duration for a
hold. This argument is specified in units of 5 milliseconds.
When the application is waiting for events in a loop, the power consumption
will be dramatically reduced by calling this function.
Example PRINT “CipherLab BASIC”

106

WAIT(200) “ the system is on hold for 1 second

Chapter 4 BASIC Commands

4.14 BATTERY COMMANDS

This section describes the commands related to power management that can be used to
monitor the voltage level of the main and backup batteries. The mobile computer is
equipped with a main battery for normal operation as well as a backup battery for
keeping SRAM data and time accuracy.

BACKUP_BATTERY

Purpose
Syntax

Remarks

Example

To get the voltage level of the backup battery.
A% = BACKUP_BATTERY

“A%” is an integer variable to be assigned to the result. That is, the voltage
level of the backup battery is returned in units of milli-volt (mV).

The backup battery is used to retain data in SRAM and keep the real-time clock
and calendar running, even when the power is off. The backup battery would
be considered as “Battery Low” when the BACK_BATTERY is lower than 2900
mV. That means the SRAM and the calendar chip may lose their data at any
time thereafter, if the battery is not recharged or replaced.

CheckBackupBattery:
IF BACKUP_BATTERY < BATTERY_LOW% THEN
BEEP (2000, 30)

CLS

PRINT “Backup Battery needs to be replaced!”
Loop:

GOTO Loop
END IF

MAIN_BATTERY

Purpose
Syntax

Remarks

Example

To get the voltage level of the main battery.
A% = MAIN_BATTERY

“A%” is an integer variable to be assigned to the result. That is, the voltage
level of the main battery is returned in units of milli-volt (mV).

The main battery is the power source for the system operation. The main
battery would be considered as “Battery Low” when the MAIN_BATTERY is
lower than 3400 mV. That means the basic operations may still be running, but
some functions that consume high power may be disabled.

BATTERY_LOW% = 3400
CheckMainBattery:

IF MAIN_BATTERY < BATTERY_LOW% THEN
BEEP(2000, 30)

CLS

PRINT “Main Battery needs to be recharged!”
Loop:

GOTO Loop
END IF

107

CipherLab 8600 BASIC Programming Part |

4.15 KEYPAD COMMANDS

All the CipherLab mobile computers provide a built-in keypad for data input. This section
describes the commands related to the keypad operation. Commands for triggering the
ESC event and the KEY event include: OFF ESC, OFF KEY, ON ESC GOSUB..., ON KEY
GOSUB...

4.15.1 GENERAL
CLR_KBD
Purpose To clear the keyboard buffer.
Syntax CLR_KBD
Remarks By calling this function, data queuing in the keyboard buffer will be cleared.
Example CLR_KBD
ON KEY(1) GOSUB KeyData_1
INKEY$
Purpose To read one character from the keyboard buffer and then remove it.
Syntax X$ = INKEY$
Remarks “X$” is a string variable to be assigned to the character read.
It can be used with menu operation to detect a shortcut key being pressed, or
with touch screen operation to detect a touched item.
Example

PRINT “Initialize System (Y/N)?”
Loop:
KeyData$ = INKEY$
IF KeyData$ = “” THEN
GOTO Loop
ELSE IF KeyData$ = “Y” THEN
GOTO Initialize

108

Chapter 4 BASIC Commands

INPUT

Purpose To take user input from the keypad and store it in a variable.

Syntax INPUT variable

Remarks “variable” is a numeric or string variable that will receive the input data. The
data entered must match the data type of the variable.
When the input task is properly ended with the ENTER key being pressed, the
data string will be stored in a variable. Otherwise, press the ESC key to abort
the task, and the string will be cleared.

Example INPUT String$ " Input a string variable

PRINT String$

INPUT Number% " input a numeric variable
PRINT Number%

INPUT_MODE

Purpose To set the display mode of the input data.
Syntax INPUT_MODE(mode%o)
Remarks “mode%” is an integer variable, indicating the input mode.
Value Meaning
0 Nothing will be displayed on the LCD.
1 The input characters will be displayed on the LCD. (default)
2 “*” will be displayed instead of the input characters. Usually, it
is applied for password input.
Example LOCATE 1, 1
INPUT_MODE (1)
INPUT Login$
LOCATE 2, 1
INPUT_MODE(2)
INPUT Password$
KEY_CLICK
Purpose To enable/disable the key click sound.
Syntax KEY_CLICK(status%o)
Remarks “status%” is an integer variable, indicating the key click status.
> The key click is enabled by default.
Value Meaning
0 Disable key click (mute mode)
1-5 Enable key click (each represents a different tone)
Example KEY_CLICK(0) “ disable the key click

109

CipherLab 8600 BASIC Programming Part |

PUTKEY
Purpose To put one character to the keyboard buffer.
Syntax PUTKEY(N%)
Remarks “N%” is an integer variable, indicating the ASCII code of a character.
It provides the capability of simulating the keypad operation.
Example PUTKEY (27) “ put [ESC] key value to the buffer

SET_TRIGGER

Purpose To set the TRIGGER key.
Syntax SET_TRIGGER(state%o)
Remarks “state%” is an integer variable, indicating the state of the trigger key.
Value Meaning
0 Set the trigger key released
1 Set the trigger key pressed
This function is used as software trigger.
Example SET_TRIGGER(1) “ Set the trigger key pressed
See Also GET_TRIGGER

GET_TRIGGER

Purpose To get the state of the TRIGGER key.

Syntax A% = GET_TRIGGER

Remarks “A%"” is an integer variable, indicating the state of the trigger key.
Value Meaning
0 The trigger key released
1 The trigger key pressed

Example A%=GET_TRIGGER

See Also SET_TRIGGER

110

Chapter 4 BASIC Commands

SET_TRIG2KEY

Purpose
Syntax

Remarks

Example

To set the TRIGGER key as other key function.
SET_TRIG2KEY(TRIG%, KEY%)

“TRIG%” is an integer variable, indicating which trigger is set.

Value Meaning

0 Middle Trigger
1 Pistol Trigger
2 Left Trigger

3 Right Trigger

“KEY%"” is an integer variable, indicating the key function to be set.

SET_TRIG2KEY(0,13) “ Set Middle Trigger as Enter key

OSK_TOGGLE

Purpose
Syntax

Remarks

Example

To toggle the display of on-screen keypad on an iOS-based device.
OSK_TOGGLE

After connection of Bluetooth HID is established, this function is used to toggle
the display of on-screen keypad on an iOS-based device.

OSK_TOGGLE

SET_PWR_KEY

Purpose

Syntax

Remarks

Example

To determine whether the POWER key serves to turn off the mobile computer
or not.

SET_PWR_KEY(N%)

“N%” is an integer variable, indicating the power key status.

Value Meaning
0 Disable power key
1 Enable power key

SET_PWR_KEY(0) “ Disable power key

111

CipherLab 8600 BASIC Programming Part |

4.15.2 ALPHA KEY

By default, the input mode is numeric and can be toggled by pressing the ALPHA key
(sky blue in color). In Alpha mode, it takes turns to show alphabets and number when
pressing the same key; the time interval between each press must not exceed one
second. For example, the “2ABC” key can generate “A”, “B”, “C” or “2” by turns within

one second.

ALPHA_LOCK

Purpose To set the ALPHA state for input mode.
Syntax ALPHA_LOCK(status%o)
Remarks “status%o” is an integer variable, indicating the alpha-input status.
Value Input Mode ALPHA State
0 Numeric mode Unlocked
1 Alpha mode, upper case Unlocked
2 Numeric mode Locked
3 Alpha mode, lower case Unlocked
5 Alpha mode, upper case Locked
6 Alpha mode, lower case Locked
Example ALPHA_LOCK(1)

GET_ALPHA_LOCK

Purpose To get information of the ALPHA state for input mode.
Syntax A% = GET_ALPHA_LOCK

Remarks “A%” is an integer variable to be assigned to the resulit.
Example Alpha_lock% = GET_ALPHA_LOCK

112

Chapter 4 BASIC Commands

4.15.3 FN KEY

The function key (orange in color) serves as a modifier key used to produce a key
combination.

I) To enable this modifier key, press the function key on the keypad, and the status icon
will be displayed on the screen.

2) Press another key to get the value of the key combination (say, F1), and the status
icon will go off immediately when the function key is set to Auto Resume mode by
FUNCTION_TOGGLE(). That is, this modifier key can work only one time for each
press.

3) To get the value of another key combination, repeat the above steps.
However, on condition that the function key is set to Toggle mode by

FUNCTION_TOGGLE(), this modifier key can work as many times as desired until it is
pressed again to exit the function mode.

FUNCTION_TOGGLE

Purpose To set the state of the FN (function) toggle.
Syntax FUNCTION_TOGGLE(status%o)
Remarks “status%” is an integer variable, indicating the state of the function toggle.
Group Value | Description
8600 Series 0 Auto Resume mode + Multi-Key mode (default)
29-key 1 Toggle mode
39-key 2 Auto Resume mode + Multi-Key mode + FN as
normal key
3 Toggle mode + FN as normal key
4 Multi-Key mode
6 Multi-Key mode + FN as normal key

» Auto Resume mode — The function mode is toggled on by pressing the
function key; it is toggled off by pressing the second key of the key
combination. A status icon is displayed on the screen to indicate the status.
Also, it allows re-pressing the function key to exit the function mode.

> Toggle mode — The function mode is toggled on by pressing the function
key; it can only be toggled off by pressing the function key again. A status
icon is displayed on the screen to indicate the status.

> Multi-Key mode — For any key combination, it requires pressing two keys
at the same time, or holding down the function key followed by the second
key.

» FN as normal key — The function key is treated as a normal key.

Example FUNCTION_TOGGLE(0) " set the FN state to Auto Resume and
Multi-Key mode

113

CipherLab 8600 BASIC Programming Part |

4.16 LCD COMMANDS

The liquid crystal display (LCD) on the mobile computer is TFT graphic display. The
display capability may vary due to the size of LCD panel.

A coordinate system is used for the cursor movement routines to determine the cursor
location — (X, y) that indicates the column and row position of cursor. The coordinates
given to the top left point is (0, 0), while those of the bottom right point depends on the
size of LCD and font. For displaying a graphic, the coordinate system is on dot (pixel)
basis.

Series Screen Size Top_Left (x, y) Bottom_Right (x, y)
8600 240 x 320 dots (0, 0) (239, 319)
4.16.1 PROPERTIES

The backlight is turned off by default. A backlight key is designed as a toggle to switch
the backlight between on and off.

BACK_LIGHT_DURATION

Purpose To specify how long the backlight will last once the mobile computer is turned
on.

Syntax BACK_LIGHT_DURATION(Dev%, Mode%, Time%b)

Remarks “Dev%” is an integer variable, specifying the destination device to be set.

Value Description

1 LCD
2 Keypad

“Mode%” is an integer variable, indicating the mode of automatic backlight.

Value Description

1 Battery Mode
2 External Power Mode

“Time%” is an integer variable, indicating a period of time in units of 1 second.

Example BACK_LIGHT_DURATION(1,1,20) " set LCD backlight lasting for 20
seconds, in Battery Mode

114

Chapter 4 BASIC Commands

BACKLIT
Purpose To set the LCD backlight.
Syntax BACKLIT(Dev%o, state%)
Remarks “Dev%” is an integer variable, specifying the destination device to be set.
Value Description
1 LCD
2 Keypad
“state%” is an integer variable, indicating a specific state (luminosity) of the
LCD backlight.
Value Description
0 Backlight off (default)
1 Backlight on
Example BACKLIT(1,1) " turn on LCD backlight;
See Also GET_BKLIT_LEVEL, SET_AUTO BKLIT, SET_BKLIT_LEVEL

SET_AUTO_BKLIT

Purpose
Syntax

Remarks

Example

See Also

To set automatic LCD backlight. LCD backlight is on when any key is pressed.
SET_AUTO_BKLIT(Dev%, Mode%, Trigger%o)

“Dev%” is an integer variable, indicating the destination device to be set.

Value Meaning
1 LCD
2 Keypad

“Mode%” is an integer variable, indicating the mode of automatic backlight.

Value Meaning
1 Battery Mode
2 External Power Mode

“Trigger%” is an integer variable, indicating the way of turning on backlight.

Value Meaning

0 Turn on by pressing the backlight key

1 Turn on by pressing any key

SET_AUTO_BKLIT(1,1 ~ Set backlight to be turned on by pressing any key
,1) in battery mode

GET_BKLIT_LEVEL, SET_BKLIT_LEVEL, BACKLIT

115

CipherLab 8600 BASIC Programming Part |

SET_BKLIT_LEVEL

Purpose To set the level of LCD backlight.

Syntax SET_ BKLIT_LEVEL(Dev%, Mode%, level%)

Remarks “Dev%” is an integer variable, indicating the destination device to be set.
Value Meaning
1 LCD
2 Keypad

“Mode%” is an integer variable, indicating the mode of backlight.

Value Meaning
1 Battery Mode
2 External Power Mode

“level%” is an integer variable, indicating the level of LCD backlight.

Value Meaning
1 Backlight with very low luminosity
2 Backlight with low luminosity
3 Backlight with medium luminosity
4 Backlight with high luminosity
5 Backlight with very high luminosity
Example SET_BKLIT_LEVEL(1, = Set backlight in battery mode with very low
1,1 luminosity
BACKLIT(1,1) " Backlight on
See Also GET_BKLIT_LEVEL, SET_AUTO_BKLIT, BACKLIT

116

Chapter 4 BASIC Commands

GET_BKLIT_LEVEL

Purpose To get the LCD backlight level.

Syntax A% = GET_BKLIT_LEVEL(Dev%, Mode%)

Remarks “Dev%” is an integer variable, indicating the destination device to be set.
Value Meaning
1 LCD
2 Keypad

“Mode%” is an integer variable, indicating the mode of backlight.

Value

Meaning

1
2

Battery Mode

External Power Mode

“A%"” is an integer value, indicating the LCD backlight level.

Value Meaning
1 Backlight with very low luminosity
2 Backlight with low luminosity
3 Backlight with medium luminosity
4 Backlight with high luminosity
5 Backlight with very high luminosity
Example A%=GET_BKLIT_LEVEL
1.1)
See Also SET_BKLIT_LEVEL, SET_AUTO_BKLIT, BACKLIT

117

CipherLab 8600 BASIC Programming Part |

SET_VIDEO_MODE

Purpose To set the display mode of the LCD.
Syntax SET_VIDEO_MODE(mode%b)
Remarks “mode%” is an integer variable, indicating the display mode.

Value | Meaning

0 Normal mode in use

1 Reverse mode in use

SET_VIDEO_MODE(1):

Example SET_VIDEO_MODE(1) " thisstringwill be printed inreverse
mode

PRINT “CipherLab mobile computers”

118

Chapter 4 BASIC Commands

SET_COLOR
Purpose To set the color of the LCD.
Syntax SET_BKLIT_LEVEL(Layer%, Order%o, Color%o)
Remarks “Layer%o” is an integer variable, indicating the display Layer.
Value | Meaning
1 foreground
2 background
“Order%” is an integer variable, indicating the display Order.
Value |Meaning
1 primary
2 secondary
“Color%” is an integer variable, indicating the color in the range of 1 to 20.
Color% Meaning Color 'Meaning
1 BLACK 11 OLIVE
2 BLUE 12 TEAL
3 LIME 13 PURPLE
4 RED 14 GRAY
5 YELLOW 15 SILVER
6 CYAN 16 WHITE
7 MAGENTA 17 User define #1
8 MAROON 18 User define #2
9 GREEN 19 User define #3
10 NAVY 20 User define #4
255 None
Example SET_COLOR(1,1,5) “ set the LCD foreground, primary color to yellow
See Also GET_COLOR

119

CipherLab 8600 BASIC Programming Part |

GET_COLOR
Purpose To get the color of the LCD.
Syntax Color%=GET_COLOR(Layer%, Order%o)
Remarks Layer%o” is an integer variable, indicating the display Layer.
Value | Meaning
1 foreground
2 background
“Order%” is an integer variable, indicating the display Order.
Value | Meaning
1 primary
2 secondary
“Color%” is an integer variable, indicating the color in the range of 1 to 20.
Color% Meaning Color 'Meaning
1 BLACK 11 OLIVE
2 BLUE 12 TEAL
3 LIME 13 PURPLE
4 RED 14 GRAY
5 YELLOW 15 SILVER
6 CYAN 16 WHITE
7 MAGENTA 17 User define #1
8 MAROON 18 User define #2
9 GREEN 19 User define #3
10 NAVY 20 User define #4
255 None
Example COLOR%= GET_COLOR(1,1) “ get the LCD foreground, primary color
See Also SET_COLOR
USER_COLOR
Purpose To set the Color by user-defined.
Syntax USER_COLOR(index%, R%, G%, B%)
Remarks “index%” is an integer variable, indicating the user-defined color in the range
of 1 to 4.

“R9%” is an integer variable, indicating the Red Color in the range of 0—~255.
“G%"” is an integer variable, indicating the Green Color in the range of 0~255.

“B%” is an integer variable, indicating the Blue Color in the range of 0—~255.

120

Chapter 4 BASIC Commands

Example USER_COLOR(1,255,0,0) “ set the user-defined color #1 to red.
4.16.2 CURSOR

CURSOR

Purpose To turn on/off the cursor indication on the LCD.

Syntax CURSOR(status%o)

Remarks “status%” is an integer variable, indicating the cursor status.

Value | Meaning

0 The cursor indication is off.
1 The cursor indication is on.
Example CURSOR(0)
CURSOR_X
Purpose To get the x coordinate of the current cursor position.
Syntax X% = CURSOR_X
Remarks “X%"” is an integer variable to be assigned to the column position of the cursor.
Example ON READER(1) GOSUB BcrData 1
BcrData_1:

BEEP(2000, 5)

Data$ = GET_READER_DATA$(1)
Pre_X% = CURSOR_X

Pre_Y% = CURSOR_Y

Locate 8, 1

PRINT Data$

Locate Pre_Y%, Pre_ X%

RETURN

121

CipherLab 8600 BASIC Programming Part |

CURSOR_Y
Purpose To get the y coordinate of the current cursor position.
Syntax “Y%” = CURSOR_Y
Remarks “Y%” is an integer variable to be assigned to the row position of the cursor.
Example ON READER(1) GOSUB BcrData 1
BcrData_1:
BEEP(2000, 5)
Data$ = GET_READER_DATA$(1)
Pre_X% = CURSOR_X
Pre_Y% = CURSOR_Y
Locate 8, 1
PRINT Data$
Locate Pre_Y%, Pre_ X%
RETURN
LOCATE
Purpose To move the cursor to a specified location on the LCD.
Syntax LOCATE row%o, col%
Remarks “row%o” is an integer variable, indicating the new row position of the cursor.
“col%” is an integer variable, indicating the new column position of the cursor.
Depending on the following elements, the maximum values for row and column
are limited —
» The size of LCD.
» The font file in use.
Example LOCATE 1, 1 'Cmove the cursor to the top left of the
LCD

122

Chapter 4 BASIC Commands

4.16.3 DISPLAY

FILL_RECT

Purpose To fill a rectangular area on the LCD.

Syntax FILL_RECT(x%, y%, size_x%, size_y%)

Remarks “xX%”, “y%” are integer variables, indicating the x, y coordinates of the upper
left point of the rectangular area.
“size_x%” is an integer variable, indicating the width of the rectangle in pixels.
“size_y%"” is an integer variable, indicating the height of the rectangle in pixels.

Example FILL_RECT(1, 1, 20, 20)

See Also CLR_RECT

PRINT

Purpose To display data on the LCD.

Syntax PRINT expression[{,];[expression]}]

Remarks “expression” may be numeric or string expression.
The position of each printed item is determined by the punctuation used to
separate items in the list.

» In the list of expression, a comma causes the next character to be printed
after the last character with a blank space, and a semicolon causes the
next character to be printed immediately after the last character.

> If the list of expressions terminates without a comma or semicolon, a
carriage return is printed at the end of the line.

Example LOCATE 1, 1
PRINT String$(20, “) “ clear the whole line
LOCATE 1, 1
A=5
PRINT A, “square is 7; A*A
See Also CLS

123

CipherLab 8600 BASIC Programming Part |

WAIT_HOURGLASS

Purpose To show a moving hourglass on the LCD.
Syntax WAIT_HOURGLASS(x%, y%, type%)
Remarks “xX%”, “y%” are integer variables, indicating the x, y coordinates of the upper
left point of a hourglass.
“type%” is an integer variable, indicating the size of a hourglass.
TYPE% Meaning
1 24 x 23 pixels
2 8 x 8 pixels
Call this function constantly to maintain its functionality. Five different patterns
of an hourglass take turns to show on the LCD indicating the passage of time.
The time factor is decided through programming but no less than two seconds.
Example WAIT_HOURGLASS(68, 68, 1) ;BS)how a 24 x 23 pixels hourglass at (68,
4.16.4 CLEAR
CLR_RECT
Purpose To clear a rectangular area on the LCD.
Syntax CLR_RECT(x%, y%o, size_x%, size_y%)
Remarks “X%”, “y%” are integer variables, indicating the x, y coordinates of the upper
left point of the rectangular area.
“size_x%” is an integer variable, indicating the width of the rectangle in pixels.
“size_y%” is an integer variable, indicating the height of the rectangle in pixels.
Example CLR_RECT(1, 1, 20, 20)
See Also CLS, FILL_RECT

124

Chapter 4 BASIC Commands

CLS
Purpose To clear everything on the LCD.
Syntax CLS
Remarks After running this command, whatever is being shown on the LCD will be
erased and the cursor will be move to (1,1).
Example ON TIMER(1, 200) GOSUB ClearScreen " TIMER(1) = 2 second
ClearScreen:
OFF TIMER(1)
CLS
RETURN
See Also CLR_RECT, PRINT

125

CipherLab 8600 BASIC Programming Part |

4.16.5 IMAGE

The command SHOW _IMAGE can be used to display images on the LCD. User needs to
allocate a string variable to store the bitmap data of the image. This string begins with
the top row of pixels.

Each row begins with the left-most pixels. Each bit of the bitmap represents a single pixel
of the image. If the bit is set to 1, the pixel is marked, and if it is O, the pixel is
unmarked. The 1st pixel in each row is represented by the least significant bit of the 1st
byte in each row. If the image is wider than 8 pixels, the 9th pixel in each row is
represented by the least significant bit of the 2nd byte in each row.

The following is an example to show our company logo, and the string variable “icon$” is
used for storing its bitmap data.

icon_1%$ = chr$(0)+chr$(0)+chr$(0)+chr$(0)+chr$(248)+chr$(255)+chr$(7)
icon_2$ = chr$(0)+chr$(0)+chr$(0)+chr$(0)+chr$(8)+chr$(0)+chr$(4)

icon_3% = chr$(0)+chr$(0)+chr$(0)+chr$(0)+chr$(254)+chr$(255)+chr$(5)
icon_4$ = chr$(0)+chr$(0)+chr$(0)+chr$(0)+chr$(254)+chr$(255)+chr$(5)
icon_5% = chr$(0)+chr$(0)+chr$(0)+chr$(0)+chr$(254)+chr$(255)+chr$(5)
icon_6$ = chr$(192)+chr$(3)+chr$(0)+chr$(0)+chr$(250)+chr$(255)+chr$(5)
icon_7% = chr$(96)+chr$(214)+chr$(201)+chr$(59)+chr$(250)+chr$(142)+chr$(5)
icon_8% = chr$(48)+chr$(80)+chr$(74)+chr$(72)+chr$(122)+chr$(109)+chr$(5)

icon_9% = chr$(16)+chr$(80)+chr$(74)+chr$(72)+chr$(122)+chr$(109)+chr$(5)

icon_10$ = chr$(16)+chr$(208)+chr$(249)+chr$(59)+chr$(186)+chr$(139)+chr$(5)
icon_11% = chr$(48)+chr$(84)+chr$(72)+chr$(24)+chr$(58)+chr$(104)+chr$(5)
icon_12$% = chr$(96)+chr$(86)+chr$(72)+chr$(40)+chr$(186)+chr$(107)+chr$(5)
icon_13% = chr$(192)+chr$(83)+chr$(200)+chr$(75)+chr$(130)+chr$(139)+chr$(5)

126

icon_14$

icon_15%

icon_16$
show_image(2,
show_image(2,
show_image(2,
show_image(2,
show_image(2,
show_image(2,
show_image(2,
show_image(2,
show_image(2,
show_image(2,
show_image(2,
show_image(2,
show_image(2,
show_image(2,
show_image(2,

show_image(2,

0,

56,
56,
56,
56,
56,

56,

, 56,

56,

56,

1,

9, 56, 1,

10,
11,
12,
13,
14,

15,

56,
56,
56,
56,
56,

56,

icon_19%)
icon_2%)
icon_3%)
icon_4%)
icon_5%)
icon_6%)
icon_7%)
icon_8%)
icon_9%)
icon_10%)
icon_11%)
icon_12%)
icon_13%)
icon_14%)
icon_15%)

icon_16%$)

Chapter 4 BASIC Commands

chr$(0)+chr$(0)+chr$(0)+chr$(0)+chr$(254)+chr$(255)+chr$(7)
chr$(0)+chr$(0)+chr$(0)+chr$(0)+chr$(254)+chr$(255)+chr$(1)

chr$(0)+chr$(0)+chr$(0)+chr$(0)+chr$(254)+chr$(255)+chr$(1)

127

CipherLab 8600 BASIC Programming Part |

GET_IMAGE

Purpose To read a bitmap pattern or capture signature from a rectangular area on the
LCD.

Syntax DataCount% = GET_IMAGE(file_index%o, x%, y%, size_x%, size_y%)

Remarks “DataCount%” is an integer variable to be assigned to the result; it is the total
data count stored in the specified transaction file.
“file_index%” is an integer variable in the range of 1 to 6, indicating which
transaction file is to store the bitmap data.
“xX%”, “y%” are integer variables, indicating the x, y coordinates of the upper
left point of the rectangular area.
“size_x%” is an integer variable, indicating the width of the rectangle in pixels.
“size_y%” is an integer variable, indicating the height of the rectangle in pixels.

Example GET_IMAGE(3, 12, 32, 60, 16)

See Also GET_TRANSACTION_DATAS$, GET_TRANSACTION_DATA_EX$

SHOW_IMAGE

Purpose To put a bitmap pattern to a rectangular area on the LCD.

Syntax SHOW_IMAGE(Xx%0, Y%, size_x%, size_y%, image$)

Remarks “xX%”, “y%” are integer variables, indicating the x, y coordinates of the upper
left point of the rectangular area.
“size_x%” is an integer variable, indicating the width of the rectangle in pixels.
“size_y%?” is an integer variable, indicating the height of the rectangle in pixels.
“image$” is a string variable, containing the bitmap data of the image.

Example icon$ = chr$(0)+chr$(0)+chr$(0)+chr$(0)+chr$(254)+chr$(255)+chr$(1)
show_image(2, 0, 56, 1, icon$)

SHOW_BMP

Purpose To put a bitmap pattern to a rectangular area on the LCD.

Syntax SHOW_BMP(Layer%, x%, y%, BMPFile$)

Remarks “layer%” is an integer variable, indicating the destination layer where the
bitmap pattern is put.
TYPE% Meaning
1 foreground
2 background
“xX%”, “y%” are integer variables, indicating the x, y coordinates of the upper
left point of the rectangular area.
“BMPFile $” is a string variable, specifying the bitmap file of the image.

Example SHOW_BMP(1, 0, O, “A:\\sample.bmp™)

128

4.16.6 GRAPHICS

Chapter 4 BASIC Commands

A monochrome graphic has three factors as listed in the table.

Key Factors Parameters Functions
Video Mode VIDEO_REVERSE 1 See SetVideoMode()
VIDEO_NORMAL 0
Pixel State DOT_MARK 1 See circle(), line(), putpixel() and rectangle()
DOT_CLEAR 0
DOT_REVERSE -1
Shape State SHAPE_FILL 1 See circle(), rectangle()
SHAPE_NORMAL 0

lllustrative examples are given below.

Shape State Pixel State

DOT_MARK
SHAPE_FILL

SHAPE_NORMAL

DOT_CLEAR DOT_REVERSE

1 N
[|~

129

CipherLab 8600 BASIC Programming Part |

CIRCLE
Purpose To draw a circle on the LCD.
Syntax CIRCLE(cx%b, cy%o, r%, type%, mode%)
Remarks “cx%”, “cy%” are integer variables, indicating the x, y coordinates of the
center of a circle.
“r%” is an integer variable, indicating the radius of a circle in pixels.
“type%” is an integer variable, indicating the type of a circle.
TYPE% Meaning
0 SHAPE_NORMAL Hollow object
1 SHAPE_FILLL Solid object
“mode%” is an integer variable, indicating the state of a pixel.
MODE% Meaning
-1 DOT_REVERSE Dot in Reverse mode
0 DOT_CLEAR Dot being cleared
1 DOT_MARK Dot being marked
Example CIRCLE(80, 120, 8, 1, 1) " draw a solid circle centered at
(8,120) with radius of 8 pixels
See Also CLS, LINE, PUT_PIXEL, RECTANGLE
LINE
Purpose To draw a line on the LCD.
Syntax LINE(x1%b, y1%, x2%, y2%, mode%)
Remarks “x1%”, “y1%” are integer variables, indicating the x, y coordinates of where a
line starts.
“X2%”, “y2%” are integer variables, indicating the x, y coordinates of where a
line ends.
“mode%” is an integer variable, indicating the state of a pixel.
MODE% Meaning
-1 DOT_REVERSE Dot in Reverse mode
0 DOT_CLEAR Dot being cleared
1 DOT_MARK Dot being marked
Example LINE(20, 10, 120, 10, 1) " draw a horizontal line
LINE(80, 120, 10, 10, 1) " draw an oblique line
See Also CIRCLE, CLS, PUT_PIXEL, RECTANGLE

130

Chapter 4 BASIC Commands

PUT_PIXEL
Purpose To mark a pixel (or a dot) on the LCD.
Syntax PUT_PIXEL(x%, y%, mode%b)
Remarks “xX%”, “y%” are integer variables, indicating the X, y coordinates of a pixel.
“mode%” is an integer variable, indicating the state of a pixel.
MODE% Meaning
-1 DOT_REVERSE Dot in Reverse mode
0 DOT_CLEAR Dot being cleared
1 DOT_MARK Dot being marked
Example PUT_PIXEL(80, 120, 1) " mark a pixel at (80, 120)
See Also CIRCLE, CLS, LINE, RECTANGLE
RECTANGLE
Purpose To draw a rectangle on the LCD.
Syntax RECTANGLE(Xx1%, y1%, x2%, y2%, type%, mode%)
Remarks “x1%”, “y1%” are integer variables, indicating the x, y coordinates of where a
diagonal starts.
“X2%”, “y2%” are integer variables, indicating the x, y coordinates of where a
diagonal ends.
“type%?” is an integer variable, indicating the type of a circle.
TYPE% Meaning
0 SHAPE_NORMAL Hollow object
1 SHAPE_FILLL Solid object
“mode%” is an integer variable, indicating the state of a pixel.
MODE% Meaning
-1 DOT_REVERSE Dot in Reverse mode
0 DOT_CLEAR Dot being cleared
1 DOT_MARK Dot being marked
Example RECTANGLE(10, 20, 80, 100, 1, 1) ~ draw a rectangle
RECTANGLE(10, 100, 80, 20, 1, 1) -~ same rectangle as above
See Also CIRCLE, CLS, LINE, PUT_PIXEL

131

CipherLab 8600 BASIC Programming Part |

4.17 FONTS

4.17.1 FONT SIZE

Basically, the mobile computer allows two font size options for the system font: 10x20
and 12x24. These options are also applicable to other alphanumerical font files (for single
byte languages), such as the multi-language font file and Hebrew/Nordic/Polish/Russian
font files.

» The LCD will show 10x20 alphanumeric characters by default.

In addition to the system font, the mobile computer supports a number of font files as
shown below. Available font size options depend on which font file is downloaded to the
mobile computer.

Font Files SetFont Options

Single-byte System font (default) FONT_SYS_10X20, FONT_SYS_12X24
Multi-language font file FONT_EU_08X16, FONT_EU_10X20
FONT_EU_12X24, FONT_EU_14X28
Double-byte Tc FONT_TC_08X16, FONT_TC_10X20
FONT_TC_12X24, FONT_TC_14X28

Sc FONT_SC_08X16, FONT_SC_10X20
FONT_SC_12X24, FONT_SC_14X28

Jp FONT_JP_08X16, FONT_JP_10X20
FONT_JP_12X24, FONT_JP_14X28

Kr FONT_KR_08X16, FONT_KR_10X20

FONT_KR_12X24, FONT_KR_14X28

4.17.2 DISPLAY CAPABILITY

Varying by the screen size and the font size of alphanumeric characters, the display
capability can be viewed by lines and characters (per line) as follows.

Screen Size (dots) Alphanumerical Font Display Capability Icon Zone

8600 240 x 320 Font Size 08x16 dots 30 (char) * 18 (lines) | Top row (240x20)
Font Size 10x20 dots |24 (char) * 15 (lines) Top row (240x20)
Font Size 12x24 dots | 20 (char) * 12 (lines) Top row (240x20)
Font Size 14x28 dots |17 (char) * 10 (lines) Top row (240x20)

132

Chapter 4 BASIC Commands

4.17.3 MULTIHLANGUAGE FONT FILE

The multi-language font file includes English (default), French, Hebrew, Latin, Nordic,
Portuguese, Turkish, Russian, Polish, Slavic, Slovak, etc. To display in any of these
languages except English, you need to call SET_LANGUAGE to specify the language by
region.

4.17.4 SPECIAL FONT FILES

Fonts with file name specifying Tc (Traditional Chinese), Sc (Simplified Chinese), Jp
(Japanese), or Kr (Korean) are referred to as the special font files because their font size
for alphanumeric characters must be determined by the SELECT _FONT command, either
10x20 or 20x20. Otherwise, the characters cannot be displayed properly.

GET_LANGUAGE

Purpose To retrieve the font/language setting.
Syntax A% = GET_LANGUAGE
Remarks “A%” is an integer variable to be assigned to the result. When the retrieved

font is a multi-language font, the returned value is listed in the table below.

A% Meaning Code Page

16 English MS-DOS Code page 437
17 Canadian French MS-DOS Code page 863
18 Hebrew MS-DOS Code page 862
19 Multilingual Latin | MS-DOS Code page 850
20 Nordic MS-DOS Code page 865
21 Portuguese MS-DOS Code page 860
22 Cyrillic (Russian) Windows Code page 1251
23 Latin Il (Slavic) MS-DOS Code page 852
24 Central European, Latin Il (Polish) Windows Code page 1250
25 Turkish MS-DOS Code page 857
30 Greek MS-DOS Code page 737
31 Latin | Windows Code page 1252
32 Greek Windows Code page 1253
33 Latin V (Turkish) Windows Code page 1254

133

CipherLab 8600 BASIC Programming Part |

Example

134

The returned value below is returned when the retrieved font is not a

multi-language one or the specified multi-language doesn’t exist.

A%

Meaning

Code Page

0

1

10
11
12
15
20
21
22
25
30
31
32
35
40
41
42
45
50
51
52
55

language%

FONT_SYS_10X20
FONT_SYS_12X24
FONT_TC_10X20
FONT_TC_12X24
FONT_TC_14X28
FONT_TC_08X16
FONT_SC_10X20
FONT_SC_12X24
FONT_SC_14X28
FONT_SC_08X16
FONT_JP_10X20
FONT_JP_12X24
FONT_JP_14X28
FONT_JP_08X16
FONT_KR_10X20
FONT_KR_12X24
FONT_KR_14X28
FONT_KR_08X16
FONT_EU_10X20
FONT_EU_12X24
FONT_EU_14X28
FONT_EU_08X16
= GET_LANGUAGE

(System font)

(System font)

(for font files Tc20)

(for font files Tc24)

(for font files Tc28)

(for font files Tc16)

(for font files Sc20)

(for font files Sc24)

(for font files Sc28)

(for font files Sc16)

(for font files Jp20)

(for font files Jp24)

(for font files Jp28)

(for font files Jp16)

(for font files Kr20)

(for font files Kr24)

(for font files Kr28)

(for font files Kr16)

(for multi-language font)
(for multi-language font)
(for multi-language font)

(for multi-language font)

Chapter 4 BASIC Commands

SET_LANGUAGE

Purpose To select which language is to be used for the multi-language font file.

Syntax SET_LANGUAGE(N%)

Remarks “N%” is an integer variable in the range of 16 to 32.
N% Meaning Code Page
16 English MS-DOS Code page 437
17 Canadian French MS-DOS Code page 863
18 Hebrew MS-DOS Code page 862
19 Multilingual Latin | MS-DOS Code page 850
20 Nordic MS-DOS Code page 865
21 Portuguese MS-DOS Code page 860
22 Cyrillic (Russian) Windows Code page 1251
23 Latin Il (Slavic) MS-DOS Code page 852
24 Central European, Latin Il (Polish) Windows Code page 1250
25 Turkish MS-DOS Code page 857
30 Greek MS-DOS Code page 737
31 Latin | Windows Code page 1252
32 Greek Windows Code page 1253
33 Latin V (Turkish) Windows Code page 1254

Note that this command will fail if the multi-language font file does not exist.
Example SET_LANGUAGE(17) * select French

135

CipherLab 8600 BASIC Programming Part |

SELECT_FONT

Purpose
Syntax

Remarks

136

To select a font size for the LCD to display alphanumeric characters properly.

SELECT_FONT(font%)

“font%” is an integer variable, indicating the font size.

font%

Meaning

0

1

10
11
12
15
20
21
22
25
30
31
32
35
40
41
42
45
50
51
52
55

FONT_SYS_10X20
FONT_SYS_12X24
FONT_TC_10X20
FONT_TC_12X24
FONT_TC_14X28
FONT_TC_08X16
FONT_SC_10X20
FONT_SC_12X24
FONT_SC_14X28
FONT_SC_08X16
FONT_JP_10X20
FONT_JP_12X24
FONT_JP_14X28
FONT_JP_08X16
FONT_KR_10X20
FONT_KR_12X24
FONT_KR_14X28
FONT_KR_08X16
FONT_EU_10X20
FONT_EU_12X24
FONT_EU_14X28
FONT_EU_08X16

» Single-byte Characters:

For single-byte characters (system, multi-language, etc.), simply assign either

(System font)

(System font)

(for font files Tc20)

(for font files Tc24)

(for font files Tc28)

(for font files Tc16)

(for font files Sc20)

(for font files Sc24)

(for font files Sc28)

(for font files Sc16)

(for font files Jp20)

(for font files Jp24)

(for font files Jp28)

(for font files Jp16)

(for font files Kr20)

(for font files Kr24)

(for font files Kr28)

(for font files Kr16)

(for multi-language font)
(for multi-language font)
(for multi-language font)

(for multi-language font)

FONT_xx_10X20 or FONT_xx_12X24.
P 24X24 Double-byte Characters:

If you assign FONT_xx_12X24, the font size for single byte characters will be
12x24, while it will still take 24x24 for double-byte characters (Tc, Sc, Jp, Kr).

It thus provides flexibility in displaying alphanumeric.
P 20x20 Double-byte Characters:

If you assign FONT_xx_10X20, the font size for single byte characters will be
10x20, while it will still take 20x20 for double-byte characters (Tc, Sc, Jp, Kr).

It thus provides flexibility in displaying alphanumeric.

Chapter 4 BASIC Commands

Example SELECT_FONT(0) " set font size 10x20 for system font
SELECT_FONT (1) " set font size 12x24 for system font
SELECT_FONT(30) " set font size 10x20 for Jp20
SELECT_FONT(50) " set font size 10x20 for multi-language

137

CipherLab 8600 BASIC Programming Part |

4.18 MEMORY COMMANDS

This section describes the commands related to the flash memory and SRAM, where
Program Manager and File System reside respectively.

Memory Size Flash Memory SRAM SD Card

8600 Series 16 MB 8 MB, 16 MB Supported

MEMORY_INFORMATION

Purpose To get information on memory allocation.
Syntax R% = MEMORY_INFORMATION(N%0)
Remarks “R%"” is an integer variable to be assigned to the result.

> If the value of N% is illegal, it returns -1.
» If the memory type does not exist, it returns 0.

“N%” is an integer variable in the range of 1 to 6, indicating the memory type.

N% Meaning

1 Base RAM, in kilobytes
2 Optional RAM, in kilobytes
3 Free memory (SRAM), in kilobytes
4 Flash memory, in kilobytes
5 SD card size, in megabytes
6 Free memory on SD card, in megabytes
Example PRINT “Free memory = , MEMORY_INFORMATION(3)
See Also FREE_MEMORY, RAM_SIZE, ROM_SIZE, SD_SIZE, SD_FREE_MEMORY

138

Chapter 4 BASIC Commands

4.18.1 FLASH

The flash memory, known as program memory, where programs reside is divided into
256 memory banks, each 64 KB. The program memory is allocated to three areas,
System (Bootloader & kernel), User (user ROM & user program), and Font.

Bootloader location in flash: 0x14000000~0x1400FFFF

Kernel location in flash: 0x14010000~0x143FFFFF

User ROM location in flash: 0x14400000—~1443FFFF

User program location in flash: 0x14440000~147FFFFF

Font location in flash: 0x14800000~14FFFFFF

v v Vv Vv Vv

FLASH_READS$

Purpose To read a data string from the memory bank 0x14400000 ~ Ox1443FFFF.
Syntax A$ = FLASH_READ$(N%)
Remarks “A$” is a string variable to be assigned to the result.

“N%” is an integer variable in the range of 1 to 1024, indicating the ordinal
number of the record.

Example A$ = FLASH_READ$(3) “ read the 3rd record

139

CipherLab 8600 BASIC Programming Part |

FLASH_WRITE

Purpose To write a data string to the memory bank 0x14400000 ~ Ox1443FFFF.
Syntax A% = FLASH_WRITE(N%, A$)
Remarks “A%” is an integer variable to be assigned to the result.
A% Meaning
1 Write flash memory successfully.
-1 The BASIC program is too large; no free flash memory available.
-2 Error command for erasing the flash memory.
-3 The given index is out of the range.
-4 Fail to write (probably flash memory is not erased yet or something
goes wrong).
“N%” is an integer variable in the range of 1 to 1024, indicating the ordinal
number of the record.
“A$” is a string variable, representing the data string to be saved.
» Before writing data to any used record, it is necessary to use the following
command to erase the memory bank first:
err% = FLASH WRITE(O, “ERASE™)
Note that the record number must be 0, and the string must be “ERASE”.
After erasing the whole memory bank, you can then write data to it by one
record at a time. Be aware that whenever you need to write data to any used
record, the whole memory bank needs to be erased; otherwise, this command
will fail.
Example err% = FLASH WRITE(1, “data number#l1’)
err% = FLASH WRITE(256, “data number#256’)
ROM_SIZE
Purpose To get the size of the whole flash memory in kilobytes.
Syntax A% = ROM_SIZE
Remarks “A%"” is an integer variable to be assigned to the result.
Example PRINT “Flash size = 7, ROM_SIZE
See Also MEMORY_INFORMATION(4)

140

Chapter 4 BASIC Commands

4.18.2 SRAM

The File System keeps user data in SRAM, which is maintained by the backup battery.
However, data loss may occur during low battery condition or when the battery is drained.
It is necessary to upload data to a host computer before putting away the mobile
computer.

FREE_MEMORY

Purpose To get the size of free data memory (SRAM) in bytes.
Syntax A& = FREE_MEMORY

Remarks “A&” is a long integer variable to be assigned to the result.
Example PRINT “Free memory = , FREE_MEMORY

See Also MEMORY_INFORMATION(3)

RAM_SIZE

Purpose To get the size of the whole data memory (SRAM) in kilobytes.
Syntax A% = RAM_SIZE

Remarks “A%” is an integer variable to be assigned to the result.
Example PRINT “SRAM size = ™, RAM_SIZE

See Also MEMORY_INFORMATION(1)

141

CipherLab 8600 BASIC Programming Part |

4.18.3 SD CARD

SD_FREE_MEMORY

Purpose To get the size of free data memory on SD card in megabytes.

Syntax A% = SD_FREE_MEMORY

Remarks “A%” is an integer variable to be assigned to the result.

Example PRINT “Free memory on SD = ”, SD_FREE_MEMORY

See Also MEMORY_INFORMATION(6)

SD_SIZE

Purpose To get the volume of SD card, excluding the space used by FAT structure.
Syntax A% = SD_SIZE

Remarks “A%"” is an integer variable to be assigned to the result, in units of megabytes.
Example PRINT “SD size = ”, SD_SIZE

See Also MEMORY_INFORMATION(5)

142

Chapter 4 BASIC Commands

4.19 FILE MANIPULATION

There are many file manipulation commands available for programming the mobile
computers. These commands help manipulate the transaction data and ease the
implementation of database system.

Two types of file structures are supported -

» Sequential structure called DAT file that is usually used to store transaction data.

» Index structure is usually used to store lookup data. Actually, there are two types of
index file. One is DBF for storing the original data records (data members), and the
other is IDX for sorting the records according to the associate key.

Below are the commands applicable to both types of files, DAT and DBF files (with
associated IDX files).

4.19.1 DAT FILES

This one has a sequential file structure, which is much like the ordinary sequential file but
is modified to support FIFO structure. We call this type of file as DAT file. Because DAT
files are usually used to store transaction data, they are also referred to as Transaction
files.

Note: (1) The length of each record in the transaction file is limited to 255 bytes.
(2) For mobile computers, a BASIC program can have up to 6 transaction files.

143

CipherLab 8600 BASIC Programming Part |

DEL_TRANSACTION_DATA

Purpose
Syntax

Remarks

Example

See Also

144

To remove a block of transaction data from the first (= default) transaction file.

DEL_TRANSACTION_DATA(N%)

“N%” is an integer variable, determining how many transaction records to be
deleted and how to delete.

> If “N%” is a positive integer, the specified number of records will be
deleted from the top of the transaction file 1. That is, the oldest records will
be deleted.

> If “N%” is a negative integer, the specified number of records will be
deleted from the bottom of the transaction file 1. That is, the latest records
will be deleted.

PRINT “Discard the latest transaction? (Y/N)”

Loop:
KeyData$ = INKEY$
IF KeyData$ = “” THEN
GOTO Loop
ELSE IF KeyData$ = “Y” THEN
DEL_TRANSACTION_DATA(-1)
END IF

DEL_TRANSACTION_DATA_EX, EMPTY_TRANSACTION

Chapter 4 BASIC Commands

DEL_TRANSACTION_DATA_EX

Purpose
Syntax

Remarks

Example

See Also

To remove a block of transaction data from a specified transaction file.
DEL_TRANSACTION_DATA_EX(file%, N%)

“file%” is an integer variable in the range of 1 to 6, indicating which transaction
file the command is to affect. These commands work the same —

» DEL_TRANSACTION_DATA_EX(1, N%)
» DEL_TRANSACTION_DATA(N%)

“N%” is an integer variable, determining how many transaction records to be
deleted and how to delete.

> If “N%” is a positive integer, the specified number of records will be
deleted from the top of the transaction file 1. That is, the oldest records will
be deleted.

> If “N%” is a negative integer, the specified number of records will be
deleted from the bottom of the transaction file 1. That is, the latest records
will be deleted.

PRINT “Discard the latest transaction? (Y/N)”

Loop:
KeyData$ = INKEY$
IF KeyData$ = “” THEN
GOTO Loop
ELSE IF KeyData$ = “Y” THEN
DEL_TRANSACTION_DATA_EX(TransFile%, -1)
END IF

DEL_TRANSACTION_DATA, EMPTY_TRANSACTION_EX

145

CipherLab 8600 BASIC Programming Part |

EMPTY_TRANSACTION

Purpose
Syntax

Remarks

Example

See Also

To remove all the transaction data from the first (= default) transaction file.
EMPTY_TRANSACTION

Note that if this function is called at the beginning of the program, data will be
deleted after the battery is replaced or System Menu is launched.

PRINT “Remove all the transaction data? (Y/N)”

Loop:
KeyData$ = INKEY$
IF KeyData$ = “”” THEN
GOTO Loop
ELSE IF KeyData$ = “Y” THEN
EMPTY_TRANSACTION
END IF

DEL_TRANSACTION_DATA, EMPTY_TRANSACTION_EX

EMPTY_TRANSACTION_EX

Purpose
Syntax

Remarks

Example

See Also

146

To remove all the transaction data from a specified transaction file.
EMPTY_TRANSACTION_EX(file%)

“file%” is an integer variable in the range of 1 to 6, indicating which transaction
file the command is to affect. These commands work the same —

» EMPTY_TRANSACTION_EX(1)
» EMPTY_TRANSACTION

Note that if this function is called at the beginning of the program, data will be
deleted after the battery is replaced or System Menu is launched.

EMPTY_TRANSACTION_EX(6)

DEL_TRANSACTION_DATA_EX, EMPTY_TRANSACTION

Chapter 4 BASIC Commands

GET_TRANSACTION_DATAS$

Purpose
Syntax

Remarks

Example

See Also

To read a transaction record from the first (= default) transaction file.
A$ = GET_TRANSACTION_DATA$(N%o)
“A$” is a string variable to be assigned to the transaction data.

“N%” is an integer variable, indicating the ordinal number of the record to be
read from the first transaction file.

WHILE (TRANSACTION_COUNT > 0)
TransactionData$ = GET_TRANSACTION_DATA$(1)
WRITE_COM(1, TransactionData$)
DEL_TRANSACTION_DATA(1)

WEND

GET_TRANSACTION_DATA_EXS$, SAVE_TRANSACTION, UPDATE_TRANSACTION

GET_TRANSACTION_DATA_EX$

Purpose
Syntax

Remarks

Example

See Also

To read a transaction record from a specified transaction file.
A$ = GET_TRANSACTION_DATA_EX$(file%, N%)
“A$” is a string variable to be assigned to the transaction data.

“file%” is an integer variable in the range of 1 to 6, indicating which transaction
file to access. These commands work the same —

» GET_TRANSACTION_DATA EX$(1,1)
» GET_TRANSACTION_DATA$(1)

“N%” is an integer variable, indicating the ordinal number of the record to be
read from the first transaction file.

WHILE (TRANSACTION_COUNT > 0)
TransactionData$ = GET_TRANSACTION_DATA_EX$(TransFile%, 1)
WRITE_COM(1, TransactionData$)
DEL_TRANSACTION_DATA_EX(TransFile%, 1)

WEND

GET_TRANSACTION_DATAS$, SAVE_TRANSACTION_EX,
UPDATE_TRANSACTION_EX

147

CipherLab 8600 BASIC Programming Part |

SAVE_TRANSACTION

Purpose
Syntax

Remarks

Example

See Also

To save (append) a transaction record to the first (= default) transaction file.
SAVE_TRANSACTION(data$)

“data$” is a string variable, representing the string to be saved in the first
(default) transaction file.

ON READER(1) GOSUB BcrData_1

BcrData_1:
Data$ = GET_READER_DATA$(1)
PRINT Data$
SAVE_TRANSACTION(Data$)
IF GET_FILE_ERROR <> 0 THEN PRINT “Transaction not saved.”
RETURN

GET_TRANSACTION_DATAS$, SAVE_TRANSACTION_EX, UPDATE_TRANSACTION

SAVE_TRANSACTION_EX

Purpose
Syntax

Remarks

Example

See Also

148

To save (append) a transaction record to a specified transaction file.
SAVE_TRANSACTION_EX(file%, data$)

“file%” is an integer variable in the range of 1 to 6, indicating which transaction
file to access. These commands work the same —

» SAVE_TRANSACTION_EX(1,data$)
P> SAVE_TRANSACTION(data$)

“data$” is a string variable, representing the string to be saved in the specified
transaction file.

ON READER(1) GOSUB BcrData_1

BcrData_1:
BEEP(2000, 5)
Data$ = GET_READER_DATA$(1)
PRINT Data$
SAVE_TRANSACTION_EX(TransFile%, Data$)
IF GET_FILE_ERROR <> 0 THEN PRINT “Transaction not saved.”
RETURN

GET_TRANSACTION_DATA_EX$, SAVE_TRANSACTION,
UPDATE_TRANSACTION_EX

Chapter 4 BASIC Commands

TRANSACTION_COUNT

Purpose

Syntax
Remarks

Example

See Also

To get the total number of transaction records saved in the first (= default)
transaction file.

A% = TRANSACTION_COUNT

“A%"” is an integer variable to be assigned to the resulit.

DataCount:
DataCount% = TRANSACTION_COUNT
CLS
PRINT DataCount%, “Transaction data is saved.”
RETURN

TRANSACTION_COUNT_EX

TRANSACTION_COUNT_EX

Purpose

Syntax

Remarks

Example

See Also

To get the total number of transaction records saved in a specified transaction
file.

A% = TRANSACTION_COUNT_EX(file%)
“A%"” is an integer variable to be assigned to the result.

“file%” is an integer variable in the range of 1 to 6, indicating which transaction
file to access. These commands work the same —

P TRANSACTION_COUNT_EX(1)
» TRANSACTION_COUNT

DataCount_1:
DataCount% = TRANSACTION_COUNT_EX(1)
CLS
PRINT DataCount%, “Data in transaction file 1.”

RETURN

TRANSACTION_COUNT

149

CipherLab 8600 BASIC Programming Part |

UPDATE_TRANSACTION

Purpose
Syntax

Remarks

Example

See Also

To update a transaction record in the first (= default) transaction file.
UPDATE_TRANSACTION(N%o, data$)

“N%” is an integer variable, indicating the ordinal number of the transaction
record to be updated.

“data$” is a string variable, representing the character string to replace the old
data.

UpdateTransaction:

UPDATE_TRANSACTION(Num%, NewData$)
RETURN

GET_TRANSACTION_DATAS$, SAVE_TRANSACTION, UPDATE_TRANSACTION_EX

UPDATE_TRANSACTION_EX

Purpose
Syntax

Remarks

Example

See Also

150

To update a transaction record in a specified transaction file.
UPDATE_TRANSACTION_EX(file%, N%, data$)

“file%” is an integer variable in the range of 1 to 6, indicating which transaction
file to access. These commands work the same —

» UPDATE_TRANSACTION_EX(1, N%, data$)
» UPDATE_TRANSACTION(N%, data$)

“N%” is an integer variable, indicating the ordinal number of the transaction
record to be updated.

“data$” is a string variable, representing the character string to replace the old
data.

UpdateTransaction_1:
UPDATE_TRANSACTION_EX(1, Num%, NewData$)
RETURN

GET_TRANSACTION_DATA_EX$, SAVE_TRANSACTION_EX,
UPDATE_TRANSACTION

Chapter 4 BASIC Commands

4.19.2 DBF FILES AND IDX FILES

This one is an index sequential file structure. Table look-up and report generation are
easily supported by using index sequential file routines. There are actually two types of
files associated with this file structure, namely, DBF files and IDX files.

» A DBF file has a fixed record length structure. This is the file that stores data records
(members). Whereas, the associate IDX files are the files that keep information of the
position of each record stored in the DBF files, but they are re-arranged (sorted)
according to some specific key values.

» In addition to the IDX files that are explicitly created by users, the BASIC run-time
maintains a default IDX file which keeps the original data sequence.

A library would be a good example to illustrate how DBF and IDX files work. When you
are trying to find a specific book in a library, you always start from the index. The book
can be found by looking into the index categories of book title, writer, publisher, ISBN
number, etc. All these index entries are sorted in ascending order for easy lookup
according to some specific information of books (book title, writer, publisher, ISBN
number, etc.) When the book is found in the index, it will tell you where the book is
actually stored.

As you can see, the books kept in the library are analogous to the data records stored in
the DBF file, and, the various index entries are just its associate IDX files. Some

information (book title, writer, publisher, ISBN number, etc.) in the data records is used
to create the IDX files.

KEY NUMBER
The length of each record in the DBF file is limited to 250 bytes. For mobile computers, a

BASIC program can have up to 5 DBF files. Each DBF file can have maximum 5
associated IDX files, and each of them is identified by its key (index) number.

Note: The valid key nhumber ranges from 1 to 5.

KEY VALUE

Data records are not fetched directly from the DBF file but rather through its associated
IDX files.

The value of file pointers of the IDX files (index pointers) does not represent the address

of the data records stored in the DBF file. It indicates the sequence number of a specific
data record in the IDX file.

151

CipherLab 8600 BASIC Programming Part |

ADD_RECORD

Purpose To add a record to a specified DBF file.
Syntax ADD_RECORD(file%, data$)
Remarks “file%” is an integer variable in the range of 1 to 5, indicating which DBF file to

be accessed.

“data$” is a string variable, representing the character string which user
intends to add to the specified DBF file.

Example ON COM(1) GOSUB HostCommand

HostCommand:

Cmd$ = READ_COM$(1)

Cmdldentifier$ = LEFT$(Cmd$, 1)

DBFNum% = VAL(MID$(Cmd$, 2, 1))

CardID$ = RIGHT$(Cmd$, LEN(Cmd$)-2)

IF Cmdldentifier$ = “+” THEN
ADD_RECORD(DBFNum%, CardID$)

ELSE

152

Chapter 4 BASIC Commands

DEL_RECORD

Purpose
Syntax

Remarks

Example

To delete the record pointed by the file pointer in a specified DBF file.
DEL_RECORD(file% [,index%o])

“file%” is an integer variable in the range of 1 to 5, indicating which DBF file to
be accessed.

“index%” is an integer variable in the range of 1 to 5, indicating which IDX file
to be accessed. If it is not specified, then the default IDX file which keeps the
original data sequence will be used.

For example, if DBF 1 contains four records: 011-231, 120-117, 043-010,
067-150.

The key (index) of the first associate IDX file is defined as starting at position 1
with length of 3, and the key (index) of the second associate IDX file is defined
as starting at position 5 with length of 3. All the file pointers of the DBF file and
IDX files are currently pointing to the last record. Then, DEL_RECORD(1) will
delete 067-150, DEL_RECORD(1,1) will delete 120-117, DEL_RECORD(1,2) will
delete 011-231.

DBF 1 IDX 1 IDX 2
011-231 011-231 043-010
120-117 043-010 120-117
043-010 067-150 067-150
--> 067-150 --> 120-117 --> 011-231

ON COM(1) GOSUB HostCommand

HostCommand:
Cmd$ = READ_COM$(1)
Cmdldentifier$ = LEFT$(Cmd$, 1)
DBFNum% = VAL(MID$(Cmd$, 2, 1))
IDXNum% = VAL(MID$(Cmd$, 3, 1))
CardID$ = RIGHT$(Cmd$, LEN(Cmd$)-3)

IF Cmdldentifier$ = “-” THEN
DEL_RECORD(DBFNum%, IDXNum%)
ELSE

153

CipherLab 8600 BASIC Programming Part |

EMPTY_FILE

Purpose To remove all the records from a specified DBF file.

Syntax EMPTY_FILE(file%o)

Remarks “file%” is an integer variable in the range of 1 to 5, indicating which DBF file to
be accessed.
Note that if this function is called at the beginning of the program, data will be
deleted after the battery is replaced or System Menu is launched.

Example ON COM(1) GOSUB HostCommand

154

HostCommand:
Cmd$ = READ_COM$(1)
Cmdldentifier$ = LEFT$(Cmd$, 1)

DBFNum% = VAL(MID$(Cmd$, 2, 1))
IDXNum% = VAL(MID$(Cmd$, 3, 1))
CardID$ = RIGHT$(Cmd$, LEN(Cmd$)-3)

IF Cmdldentifier$ = “I” THEN
EMPTY_FILE(DBFNum%)
ELSE

Chapter 4 BASIC Commands

FIND_RECORD

Purpose

Syntax

Remarks

Example

To search for records in a specified DBF file that matches the key string with
respect to a specified IDX.

A% = FIND_RECORD(file%, index%, key$)
“A%"” is an integer variable to be assigned to the resulit.

“file%” is an integer variable in the range of 1 to 5, indicating which DBF file to
be accessed.

“index%” is an integer variable in the range of 1 to 5, indicating which IDX file
to be accessed.

“key$” is a string variable, representing the character string which indicates the
matching string to be found.

» If any record member in the DBF file matches the key string with respect to
the IDX file, FIND_RECORD will return 1, and the file pointer of the IDX file
will point to the first record with the matching string.

» If there is no match, the file pointer will point to the first record whose
index value is greater than the vale of “key$”.

ON COM(1) GOSUB HostCommand

HostCommand:

Cmd$ = READ_COM$(1)

Cmdldentifier$ = LEFT$(Cmd$, 1)

DBFNum% = VAL(MID$(Cmd$, 2, 1))

IDXNum% = VAL(MID$(Cmd$, 3, 1))

CardID$ = RIGHT$(Cmd$, LEN(Cmd$)-3)

IF Cmdldentifier$ = “?” THEN
IF FIND_RECORD(DBFNum%, IDXNumd%, CardID$) = 1 THEN
PRINT “Data is found in DBF.””, DBFNum%
ELSE
PRINT “Data is not found in DBF.”, DBFNum%
END IF

ELSE

155

CipherLab 8600 BASIC Programming Part |

GET_RECORDS$

Purpose

Syntax

Remarks

Example

To get a record in a specified DBF file, which the file pointer of a specified IDX
file is pointing to.

A$ = GET_RECORD(file% [,index%])
“A$” is a string variable to be assigned to the result.

“file%” is an integer variable in the range of 1 to 5, indicating which DBF file to
be accessed.

“index%” is an integer variable in the range of 1 to 5, indicating which IDX file
to be accessed. If it is not specified, the default IDX file which keeps the
original data sequence will be used.

ON COM(1) GOSUB BcrbData_1

BcrData_1:
BEEP(2000, 5)
ID$ = GET_READER_DATA$(1)

IF FIND_RECORD(DBFNum%, IDXNum%, ID$) = 1 THEN
Data$ = GET_RECORD$(DBFNum%, IDXNum%)
Item$ = MID$S(Data$, LEN(Data$)-I1DLeng%-I1temLeng%)
Note$ = RIGHT$(Data$, LEN(Data$)-IDLeng%-ItemLeng%)
LOCATE 1, 1
PRINT “ID -7, Data$
LOCATE 2, 1
PRINT “Item =7, ltem$
LOCATE 3, 1
PRINT “Note :”, Note$
ELSE

GET_RECORD_NUMBER

Purpose

Syntax

Remarks

Example

156

To get the ordinal number of the record pointed to by the file pointer of a
specified DBF file and IDX file.

A% = GET_RECORD_NUMBER(file% [,index%o])
“A%” is an integer variable to be assigned to the number.

“file%” is an integer variable in the range of 1 to 5, indicating which DBF file to
be accessed.

“index%” is an integer variable in the range of 1 to 5, indicating which IDX file
to be accessed. If it is not specified, the default IDX file which keeps the
original data sequence will be used.

A% = GET_RECORD_NUMBER(1, 1)

Chapter 4 BASIC Commands

MOVE_TO

Purpose To move the file pointer, of a specified DBF and IDX files, to a specified
position.

Syntax MOVE_TO(file% [,index%], record_number%)

Remarks “file%” is an integer variable in the range of 1 to 5, indicating which DBF file to
be accessed.
“index%” is an integer variable in the range of 1 to 5, indicating which IDX file
to be accessed. If it is not specified, the default IDX file which keeps the
original data sequence will be used.
“record_number%” is a positive integer variable, indicating the ordinal number
of the record where the file pointer is moved to.

Example MOVE_TO(1, 1, 20)

MOVE_TO_NEXT

Purpose
Syntax

Remarks

Example

To move the file pointer, of a specified DBF and IDX files, one record forward.
MOVE_TO_NEXT(file% [,index%o])

“file%” is an integer variable in the range of 1 to 5, indicating which DBF file to
be accessed.

“index%” is an integer variable in the range of 1 to 5, indicating which IDX file
to be accessed. If it is not specified, the default IDX file which keeps the
original data sequence will be used.

MOVE_TO_NEXT(1, 1)

MOVE_TO_PREVIOUS

Purpose
Syntax

Remarks

Example

To move the file pointer, of a specified DBF and IDX files, one record backward.
MOVE_TO_PREVIOUS(file% [,index%])

“file%” is an integer variable in the range of 1 to 5, indicating which DBF file to
be accessed.

“index%” is an integer variable in the range of 1 to 5, indicating which IDX file
to be accessed. If it is not specified, the default IDX file which keeps the
original data sequence will be used.

MOVE_TO_PREVIOUS(1, 1)

RECORD_COUNT

Purpose
Syntax

Remarks

Example

To get the total number of the records in a specified DBF file.
A% = RECORD_COUNT(file%b)
“A%” is an integer variable to be assigned to the resulit.

“file%” is an integer variable in the range of 1 to 5, indicating which DBF file to
be accessed.

TotalRecord_1% = RECORD_COUNT(1)

157

CipherLab 8600 BASIC Programming Part |

UPDATE_RECORD

Purpose

Syntax

Remarks

Example

158

To update the record, which the file pointer of a specified DBF and IDX files is
pointing to.

UPDATE_RECORD(file%, index%, data$)

“file%” is an integer variable in the range of 1 to 5, indicating which DBF file to
be accessed.

“index%” is an integer variable in the range of 1 to 5, indicating which IDX file
to be accessed. If it is not specified, the default IDX file which keeps the
original data sequence will be used.

“data$” is a string variable, representing the character string to replace the old
data.

ON COM(1) GOSUB HostCommand

HostCommand:
Cmd$ = READ_COM$(1)
Cmdldentifier$ = LEFT$(Cmd$, 1)
DBFNum% = VAL(MID$(Cmd$, 2, 1))
IDXNum% = VAL(MID$(Cmd$, 3, 1))
CardID$ = RIGHT$(Cmd$, LEN(Cmd$)-3)
IF Cmdldentifier$ = “&” THEN
UPDATE_RECORD(DBFNum%, IDXNum%, CardID$)
ELSE

Chapter 4 BASIC Commands

4.19.3 ERROR CODE

The command GET_FILE_ERROR returns the error code, which is a number that indicates
the result of the last file manipulation. A value other than O indicates error.

GET_FILE_ERROR

Purpose To get the error code of the previous file manipulation command.
Syntax A% = GET_FILE_ERROR
Remarks “A%” is an integer variable to be assigned to the result.

» If there is no error, it returns O.

» If it returns a value other than 0, possible error code and its interpretation
will be listed as follows.

Error Code Interpretation

10 No free memory for file extension.
For other types of error, e.g. invalid file ID, it will cause a run-time error.

Example
ADD_RECORD(1, Data$)
IF (GET_FILE_ERROR = 10) THEN
ErrorMessage$ = “No free file space.”
END IF

159

CipherLab 8600 BASIC Programming Part |

4.20 SD CARD

SD card can be accessed directly by using the provided functions in user application. Yet,
when the mobile computer is connected to your computer via the USB cable, it can be
treated as a removable disk (USB mass storage device) as long as it is configured
properly through programming or via System Menu | Storage Menu | Run As USB
Disk. Refer to Part 11: USB Connection. For memory information, refer to 4.18.3 SD
Card.

Direct Access to SD for DAT Files

» Use the functions provided in 4.19.1 DAT Files to access DAT files on SD card, which must be
under the directory “\BasicRun”.

» The size of DAT files on SD card can be calibrated via System Menu. If the function
DEL_TRANSACTION_DATA() or DEL_TRANSACTION_DATA_EX() is called in BASIC applications
to remove records from file top, the space will not be released immediately. Users have to
refresh the size of “A:\BASICRUN\TXACTn.DAT” (n=1~6) via System Menu | SD Card Menu |
Access SD Card | Check File Size.

Direct Access to SD for DBF Files

> Use the functions provided in 4.19.2 DBF Files and IDX Files to access DBF files on SD card,
which must be under the directory “\BasicRun”. When creating DBF files, it will have “.DB0O” as
the filename extension for the DBF file itself and “.DB1” — “.DB4” for the IDX files.

4.20.1 FILE SYSTEM

It supports FAT12/FAT16/FAT32 and allows formatting the card through C programming
or via System Menu | SD Card Menu | Access SD Card. Based on the capacity of the
card, it will automatically decide the FAT format:

Card Capacity FAT Format Sectors per Cluster
= 32 MB FAT12 32

= 1GB FAT16 32

= 2GB FAT16 64

= 8GB FAT32 8

160

Chapter 4 BASIC Commands

4.20.2 DIRECTORY

Unlike the file system on SRAM, the file system on SD card supports hierarchical tree
directory structure and allows creating sub-directories. Several directories are reserved
for particular use.

Reserved Directory Related Application or Function Remark
\Program » System Menu | Load Program | Store programs to this folder so that you can
» Program Manager | Download download them to the mobile computer:
» Program Manager | Activate b C program — *.SHX
» Kernel Menu | Load Program » BASIC program — *.INI and *.SYN
» Kernel Menu | Kernel Update
» UPDATE_BASIC()

\BasicRun BASIC Runtime Store DAT and DBF files that are created and
accessed in BASIC runtime to this folder.
Their permanent filenames are as follows:

DAT Filename

DAT file #1 TXACT1.DAT

DAT file #2 TXACT2.DAT

DAT file #3 TXACT3.DAT

DAT file #4 TXACT4.DAT

DAT file #5 TXACTS.DAT

DAT file #6 TXACT6.DAT

DBF Filename

DBF file #1 Record file F1.DBO

System Default | F1.DB1
Index

Index file #1 F1.DB2

Index file #2 F1.DB3

Index file #3 F1.DB4

Index file #4 F1.DB5

Index file #5 F1.DB6

DBF file #2 Record file F2.DBO

System Default | F2.DB1
Index

Index file #1 F2.DB2

Index file #2 F2.DB3

Index file #3 F2.DB4

Index file #4 F2.DB5

Index file #5 F2.DB6

161

CipherLab 8600 BASIC Programming Part |

\AG\DBF
\AG\DAT
\AG\EXPORT
\AG\IMPORT

162

DBF file #3 Record file F3.DBO
System Default | F3.DB1
Index
Index file #1 F3.DB2
Index file #2 F3.DB3
Index file #3 F3.DB4
Index file #4 F3.DB5
Index file #5 F3.DB6

DBF file #4 Record file F4.DBO
System Default | F4.DB1
Index
Index file #1 F4.DB2
Index file #2 F4.DB3
Index file #3 F4.DB4
Index file #4 F4.DB5
Index file #5 F4.DB6

DBF file #5 Record file F5.DBO
System Default | F5.DB1
Index
Index file #1 F5.DB2
Index file #2 F5.DB3
Index file #3 F5.DB4
Index file #4 F5.DB5
Index file #5 F5.DB6

created and/or

accessed in

Generator to this folder.

Application Generator (a.k.a. AG) Store DAT, DBF, and Lookup files that are

Application

Chapter 4 BASIC Commands

4.20.3 FILE NAME

A file name must follow 8.3 format (= short filenames) — at most 8 characters for
filename, and at most three characters for filename extension. The following characters
are unacceptable: “* + ,:; <==>?]1[1

» It can only display a filename of 1 — 8 characters (the null character not included),
and filename extension will be displayed if provided. If a file name specified is longer
than eight characters, it will be truncated to eight characters.

» Long filenames, at most 255 characters, are allowed when using the mobile computer
equipped with SD card as a mass storage device. For example, you may have a
filename “123456789.txt” created from your computer. However, when the same file
is directly accessed on the mobile computer, the filename will be truncated to
“123456~1.txt".

» If a file name is specified other in ASCII characters, in order for the mobile computer
to display it correctly, you may need to download a matching font file to the mobile
computer first.

> The file name is not case-sensitive.

163

CipherLab 8600 BASIC Programming Part |

164

Appendix |
SCANNERDESTBL ARRAYS

IN THIS CHAPTER
Symbology Parameter Table for CCD/Laser Reader............. 165
Symbology Parameter Table for 2D Reader........................ 173

SYMBOLOGY PARAMETER TABLE FOR CCD/LASER READER

No. (N1%) Values (N2%) & Description Default Scan Engine

1 1: Enable Code 39 1 CCD, Laser
O: Disable Code 39

2 1: Enable Italian Pharmacode 0] CCD, Laser
O: Disable Italian Pharmacode

3 1: Enable CIP 39 (French Pharmacode) 0 CCD, Laser
O: Disable CIP 39

4 1: Enable Industrial 25 1 CCD, Laser
O: Disable Industrial 25

5 1: Enable Interleaved 25 1 CCD, Laser
O: Disable Interleaved 25

6 1: Enable Matrix 25 0] CCD, Laser
O: Disable Matrix 25

7 1: Enable Codabar (NW7) 1 CCD, Laser
0: Disable Codabar (NW7)

8 1: Enable Code 93 1 CCD, Laser
O: Disable Code 93

9 1: Enable Code 128 & EAN-128 1 CCD, Laser
O: Disable Code 128 & EAN-128

10 1: Enable UPC-E 1 CCD, Laser
O: Disable UPC-E

11 1: Enable UPC-E Addon 2 0 CCD, Laser
0: Disable UPC-E Addon 2

12 1: Enable UPC-E Addon 5 0 CCD, Laser
O: Disable UPC-E Addon 5

165

CipherLab 8600 BASIC Programming Part |

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

166

c rOoOoOpbpP O0OpbpP OoOopbpP o prpoprpropPrpror or,rprororprorprobrprobrpropbrp/or O pr oOFPR

: Enable EAN-8

: Disable EAN-8

: Enable EAN-8 Addon 2

: Disable EAN-8 Addon 2

: Enable EAN-8 Addon 5

: Disable EAN-8 Addon 5

: Enable EAN-13 & UPC-A

: Disable EAN-13 & UPC-A

: Enable EAN-13 & UPC-A Addon 2

: Disable EAN-13 & UPC-A Addon 2

: Enable EAN-13 & UPC-A Addon 5

: Disable EAN-13 & UPC-A Addon 5

: Enable MSI

: Disable MSI

: Enable Plessey

: Disable Plessey

: Enable Coop 25

: Disable Coop 25

: Transmit Code 39 Start/Stop Character

: DO NOT transmit Code 39 Start/Stop Character
: Verify Code 39 Check Digit

: DO NOT verify Code 39 Check Digit

: Transmit Code 39 Check Digit

: DO NOT transmit Code 39 Check Digit

: Full ASCII Code 39

: Standard Code 39

: Transmit Italian Pharmacode Check Digit
: DO NOT transmit Italian Pharmacode Check Digit
: Transmit CIP 39 Check Digit

: DO NOT transmit CIP 39 Check Digit

: Verify Interleaved 25 Check Digit

: DO NOT verify Interleaved 25 Check Digit
: Transmit Interleaved 25 Check Digit

: DO NOT transmit Interleaved 25 Check Digit
: Verify Industrial 25 Check Digit

: DO NOT verify Industrial 25 Check Digit

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

31

32

33

34

35

36

37

38

39

40

41

42

S r O LB O P

: Transmit Industrial 25 Check Digit

: DO NOT transmit Industrial 25 Check Digit

: Verify Matrix 25 Check Digit

: DO NOT verify Matrix 25 Check Digit

: Transmit Matrix 25 Check Digit

: DO NOT transmit Matrix 25 Check Digit

Select Interleaved 25 Start/Stop Pattern

0]
1
2

: Use Industrial 25 Start/Stop Pattern
: Use Interleaved 25 Start/Stop Pattern
: Use Matrix 25 Start/Stop Pattern

Select Industrial 25 Start/Stop Pattern

0
1
2

: Use Industrial 25 Start/Stop Pattern
: Use Interleaved 25 Start/Stop Pattern
: Use Matrix 25 Start/Stop Pattern

Select Matrix 25 Start/Stop Pattern

0
1
2

: Use Industrial 25 Start/Stop Pattern
: Use Interleaved 25 Start/Stop Pattern
: Use Matrix 25 Start/Stop Pattern

Select Codabar Start/Stop Character

O Fr W N B O

: abcd/abcd
: abcd/tn*e
: ABCD/ABCD
: ABCD/TN*E

: Transmit Codabar Start/Stop Character

: DO NOT transmit Codabar Start/Stop Character

MSI Check Digit Verification

0]
1
2

: Single Modulo 10
: Double Modulo 10
: Modulo 11 and Modulo 10

MSI Check Digit Transmission

0
1
2
1:
0
1
0

: Last Check Digit is NOT transmitted

: Both Check Digits are transmitted

: Both Check Digits are NOT transmitted
Transmit Plessey Check Digits

: DO NOT transmit Plessey Check Digits

: Convert Standard Plessey to UK Plessey

: No conversion

Appendix |

ScannerDesTbl Arrays

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

167

CipherLab 8600 BASIC Programming Part |

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57
58

59
60

168

: Convert UPC-E to UPC-A

: No conversion

: Convert UPC-A to EAN-13

: No conversion

: Enable ISBN Conversion

: No conversion

: Enable ISSN Conversion

: No conversion

: Transmit UPC-E Check Digit

: DO NOT transmit UPC-E Check Digit

: Transmit UPC-A Check Digit

: DO NOT transmit UPC-A Check Digit

: Transmit EAN-8 Check Digit

: DO NOT transmit EAN8 Check Digit

: Transmit EAN-13 Check Digit

: DO NOT transmit EAN13 Check Digit

: Transmit UPC-E System Number

: DO NOT transmit UPC-E System Number

: Transmit UPC-A System Number

: DO NOT transmit UPC-A System Number

: Convert EAN-8 to EAN-13

: No conversion

: Convert EAN8 to EAN13 in GTIN-13 format
: Convert EAN8 to EAN13 in Default format

: Enable Negative Barcode

: Disable Negative Barcode

: Three Times Read Redundancy for Scanner Port 1
: Two Times Read Redundancy for Scanner Port 1

: One Time Read Redundancy for Scanner Port 1

o r MW O P OP OP OPFP O P OPFP OPFP OPFP OPFP OPFP O PFP O P OFPF

: No Read Redundancy for Scanner Port 1
(Not for mobile computers.)

1: Industrial 25 Code Length Limitation in Max/Min Length
Format

0: Industrial 25 Code Length Limitation in Fixed Length
Format

Industrial 25 Max Code Length / Fixed Length 1
Industrial 25 Min Code Length / Fixed Length 2

Max. 127
Min. 4

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,
CCD,

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

61

62
63
64

65
66
67

68
69
70

71
72

73
74

75
76

Appendix |

1: Interleaved 25 Code Length Limitation in Max/Min Length
Format

0: Interleaved 25 Code Length Limitation in Fixed Length
Format

Interleaved 25 Max Code Length / Fixed Length 1
Interleaved 25 Min Code Length / Fixed Length 2

1: Matrix 25 Code Length Limitation in Max/Min Length
Format

0: Matrix 25 Code Length Limitation in Fixed Length Format
Matrix 25 Max Code Length / Fixed Length 1
Matrix 25 Min Code Length / Fixed Length 2
1: MSI 25 Code Length Limitation in Max/Min Length Format
0: MSI 25 Code Length Limitation in Fixed Length Format
MSI Max Code Length / Fixed Length 1
MSI Min Code Length / Fixed Length 2
Scan Mode for Scanner Port 1

: Aiming Mode

: Test Mode

: Laser Mode

: Repeat Mode

8

7

6

5

4: Momentary Mode

3: Alternate Mode
2: Auto Power Off Mode
1: Continuous Mode
0: Auto Off Mode
(Not for mobile computers.)

Scanner time-out duration in seconds for Aiming mode, Laser
mode, Auto Off mode, and Auto Power Off mode

1 ~ 255 (sec): Decode time-out
0: No time-out

(Not for mobile computers.)

1: Enable GS1 DataBar Limited
O: Disable GS1 DataBar Limited
Reserved

1: Enable GS1 DataBar Omnidirectional & GS1 DataBar
Expanded

0: Disable GS1 DataBar Omnidirectional & GS1 DataBar
Expanded

ScannerDesTbl Arrays

1 CCD,

Max. 127 CCD,
Min. 4 CCD,
1 CCD,

Max. 127 CCD,
Min. 4 CCD,
1 CCD,

Max. 127 CCD,
Min. 4 CCD,
6 CCD,
3 sec. CCD,
0 CCD,
0 CCD,

Laser

Laser
Laser

Laser

Laser
Laser

Laser

Laser
Laser

Laser

Laser

Laser

Laser

169

CipherLab 8600 BASIC Programming Part |

77

78

79

80

81

82

83

84

85

86

87

88 ~ 147

148

149

150

170

: Transmit GS1 DataBar Omnidirectional Code ID
: DO NOT transmit GS1 DataBar Omnidirectional Code ID
: Transmit GS1 DataBar Omnidirectional Application 1D

: DO NOT transmit GS1 DataBar Omnidirectional Application

-0 LB O P
O

: Transmit GS1 DataBar Omnidirectional Check Digit

: DO NOT transmit GS1 DataBar Omnidirectional Check Digit
: Transmit GS1 DataBar Limited Code ID

: DO NOT transmit GS1 DataBar Limited Code ID

: Transmit GS1 DataBar Limited Application ID

: DO NOT transmit GS1 DataBar Limited Application ID
: Transmit GS1 DataBar Limited Check Digit

: DO NOT transmit GS1 DataBar Limited Check Digit

: Transmit GS1 DataBar Expanded Code ID

: DO NOT transmit GS1 DataBar Expanded Code ID

: Enable original Telepen (= Numeric mode)

: Disable original Telepen (= ASCII mode)

: Enable Telepen

: Disable Telepen

: Enable UPC-E1 & UPC-EO

: Enable UPC-EO only

: Enable GTIN

: Disable GTIN

o r oo O0OOpbpP Opbp ©oOpbLb,p OpL,p/ oL, O PFrL, OFPR

N/A
1: Enable UPC-E Triple Check
0: Disable UPC-E Triple Check
Aiming time-out duration for Aiming mode
1 ~ 65535 (in units of 5 milliseconds): Aiming time-out
0: No aiming
#9 for Code 128 & EAN-128 is required to be 1.
0: Decode Code 128 & EAN-128
(for compatibility with old firmware version)
1: Decode EAN- 128 only
2: Decode Code 128 only
3: Decode Code 128 & EAN-128

200

sec.)

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

151

152

153—~170
171

172

173

174

175

176
177
178
179

180 ~

189
190

191 ~

299
300

301

302

303

304

#9 for Code 128 & EAN-128 is required to be 1.

1
0

1
0

: Strip EAN-128 Code ID
: DO NOT strip EAN-128 Code ID
(for compatibility with old firmware version)
: Enable ISBT 128
: Disable ISBT 128

N/A

1
0
1
0

: Verify Coop 25 Check Digit

: DO NOT verify Coop 25 Check Digit

: Transmit Coop 25 Check Digit

: DO NOT transmit Coop 25 Check Digit

Code 39 Security Level

1
0
1
0:
1
0

: Normal

: High

: Enable GS1 formatting for EAN-128

Disable GS1 formatting for EAN-128

: Enable GS1 formatting for GS1 DataBar Family

AlMark[0]
AlMark[1]
FSEAN128[0]
FSEAN128[1]
N/A

1
0

: UPC/EAN security high
: UPC/EAN security normal

N/A

S r O b O P O B, O P

: Enable EAN-13 Addon Mode 414/419/434/439
: Disable EAN-13 Addon Mode 414/419/434/439
: Enable EAN-13 Addon Mode 378/379

: Disable EAN-13 Addon Mode 378/379

: Enable EAN-13 Addon Mode 977

: Disable EAN-13 Addon Mode 977

: Enable EAN-13 Addon Mode 978

: Disable EAN-13 Addon Mode 978

: Enable EAN-13 Addon Mode 979

: Disable EAN-13 Addon Mode 979

: Disable GS1 formatting for GS1 DataBar Family

Appendix |

o O O O

ScannerDesTbl Arrays

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,
CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

171

CipherLab 8600 BASIC Programming Part |

305

306

307
308

309
311

312

313

314

315

316

317

172

SO r O Pk

: Enable EAN-13 Addon Mode 491
: Disable EAN-13 Addon Mode 491
: Enable EAN-13 Addon Mode 529
: Disable EAN-13 Addon Mode 529

N/A

Addon security for UPC/EAN barcodes
Level: 0—30

N/A

o r O r O r O FrLr O Fr O PR

: Skip checking Code 128 quiet zone
: Check Code 128 quiet zone

: Skip checking Code 39 quiet zone
: Check Code 39 quiet zone

: Skip checking UPC/EAN quiet zone
: Check Code UPC/EAN quiet zone

: Skip checking Codabar quiet zone
: Check Codabar quiet zone

: Skip checking Plessey quiet zone

: Check Plessey quiet zone

: Skip checking Code 93 quiet zone
: Check Code 93 quiet zone

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

CCD,

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Laser

Appendix | ScannerDesTbl Arrays

SYMBOLOGY PARAMETER TABLE FOR 2D READER

No. (N1%) Values (N2%) & Description Default Scan Engine
1 1: Enable Code 39 1 2D

O: Disable Code 39
2 1 : Enable Code 32 (lItalian Pharmacode) 0 2D
O : Disable Code 32
N/A -—- -
4 N/A -
1: Enable Interleaved 25 1 2D

0: Disable Interleaved 25

6 Matrix 25 0] 2D

7 1: Enable Codabar (NW7) 1 2D
0: Disable Codabar (NW7)

8 1: Enable Code 93 1 2D
O: Disable Code 93

9 1: Enable Code 128 1 2D
O: Disable Code 128

10 1: Enable UPC-EO 1 2D
0: Disable UPC-EO (depends)

11, 1: Enable Only Addon 2 & 5 of UPC & EAN Families 0 2D

12 (It requires “ANY” of the indexes to be set 1.)
0: Disable Only Addon 2 & 5 of UPC & EAN Families

(It requires “ALL” of the indexes to be set 0.)
» Refer to 14, 15, 17, 18, 107, and 109.

13 1: Enable EAN-8 1 2D
0: Disable EAN-8 (depends)

14, See #11, #12. 0 2D

15

16 1: Enable EAN-13 1 2D
0: Disable EAN-13 (depends)

17, See #11, #12. 0 2D

18

19 1: Enable MSI 0 2D
O: Disable MSI

20 N/A --- ---

21 Reserved -— ---

173

CipherLab 8600 BASIC Programming Part |

22
23

24

25

26
27
28
29

30
31
32

33
34
35
36
37

38

39

40

41
42
43

174

N/A

: Verify Code 39 Check Digit

: DO NOT verify Code 39 Check Digit

: Transmit Code 39 Check Digit

: DO NOT transmit Code 39 Check Digit
: Full ASCII Code 39

: Standard Code 39

o r O F+»r O B

N/A

N/A

N/A

1: Transmit Interleaved 25 Check Digit

0: DO NOT transmit Interleaved 25 Check Digit
N/A

N/A

1: Verify Matrix 25 Check Digit

0: DO NOT verify Matrix 25 Check Digit

I

: Transmit Matrix 25 Check Digit

0: DO NOT transmit Matrix 25 Check Digit
N/A

N/A

N/A

N/A

1: Transmit Codabar Start/Stop Character
0: DO NOT transmit Codabar Start/Stop Character
MSI Check Digit Verification

2: Modulo 11 and Modulo 10

1: Double Modulo 10

0: Single Modulo 10

MSI Check Digit Transmission

2: Both check digits are NOT transmitted
1: Both check digits are transmitted

0: Last check digit is NOT transmitted
N/A

N/A

1: Convert UPC-EO to UPC-A

0: No conversion

2D

2D

2D

2D

2D

2D

44

45
46
47

48

49
50
51

52

53

54
55
56
57
58
59
60
61

62
63

64

65
66

67

Appendix |

1: Convert UPC-A to EAN-13

0: No conversion

N/A

N/A

1: Transmit UPC-EO Check Digit

0: DO NOT transmit UPC-EO Check Digit

1: Transmit UPC-A Check Digit

0: DO NOT transmit UPC-A Check Digit

N/A

N/A

: Transmit UPC-EO System Number

: DO NOT transmit UPC-EO System Number
: Transmit UPC-A System Number

: DO NOT transmit UPC-A System Number
: Convert EAN-8 to EAN-13

o r O L O P

: No conversion

Reserved

N/A

N/A

(Not for mobile computers.)
N/A

N/A

N/A

1: Interleaved 25 Code Length Limitation in Max/Min Length
Format

0: Interleaved 25 Code Length Limitation in Fixed Length
Format

Interleaved 25 Max Code Length / Fixed Length 1
Interleaved 25 Min Code Length / Fixed Length 2
Note| angthl must be greater than Length2.

1: Matrix 25 Code Length Limitation in Max/Min Length
Format

0: Matrix 25 Code Length Limitation in Fixed Length Format
Matrix 25 Max Code Length / Fixed Length 1

Matrix 25 Min Code Length / Fixed Length 2

Note| angthl must be greater than Length2.

1: MSI 25 Code Length Limitation in Max/Min Length Format
0: MSI 25 Code Length Limitation in Fixed Length Format

ScannerDesTbl Arrays

Max. 55
Min. 4

Max. 55
Min. 4

1

2D

2D

2D

2D

2D
2D

2D

2D
2D

2D

175

CipherLab 8600 BASIC Programming Part |

68
69

70

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

89
90

91

92

176

MSI Max Code Length / Fixed Length 1
MSI Min Code Length / Fixed Length 2
Note| engthl must be greater than Length2.
Scan Mode for Scanner Port 1

8: Aiming Mode
7: Test Mode
3: Alternate Mode
1: Continuous Mode

0: Auto-off Mode

Any value other than the above: Laser Mode

(Not for mobile computers.)

N/A

(Not for mobile computers.)

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

1: Code 39 Length Limitation in Max/Min Length Format
0: Code 39 Length Limitation in Fixed Length Format
Code 39 Max Code Length / Fixed Lengthl

Code 39 Min Code Length / Fixed Length2

Note| engthl must be greater than Length2.

: Transmit UPC-E1 System Number

: DO NOT transmit UPC-E1 System Number

: Transmit UPC-E1 Check Digit

: DO NOT transmit UPC-E1 Check Digit

SO r O Pk

Max. 55
Min. 4

Laser
Mode

Max. 55
Min. 4

2D
2D

2D

2D
2D

2D

2D

Appendix | ScannerDesTbl Arrays

93 1 : Enable GS1-128 Emulation Mode for UCC/EAN Composite O 2D
Codes
O : Disable GS1-128 Emulation Mode for UCC/EAN Composite
Codes

94 1: Enable TCIF Linked Code 39 0] 2D
O: Disable TCIF Linked Code 39

95 1: Convert UPC-E1 to UPC-A 0 2D
0: No conversion

96 1: Enable Code 11 0 2D
O: Disable Code 11

97 1: Enable Bookland EAN 0 2D

(#16 for EAN-13 is required to be 1.)

0: Disable Bookland EAN

o8 1: Enable Industrial 25 (Discrete 25) 1 2D
0: Disable Industrial 25 (Discrete 25)

99 1: Enable ISBT 128 1 2D
O: Disable ISBT 128

100 1: Enable Trioptic Code 39 0 2D
0: Disable Trioptic Code 39

101 1: Enable UCC/EAN-128 1 2D
0: Disable UCC/EAN-128

102 1: Convert GS1 DataBar to UPC/EAN 0 2D
0: No conversion

103 1: Enable GS1 DataBar Expanded 1 2D
0: Disable GS1 DataBar Expanded

104 1: Enable GS1 DataBar Limited 1 2D
0: Disable GS1 DataBar Limited

105 1: Enable GS1 DataBar Omnidirectional 1 2D
O: Disable GS1 DataBar Omnidirectional

106 1: Enable UPC-A 1 2D
0: Disable UPC-A (depends)

107, 1: Enable Only Addon 2 & 5 of UPC & EAN Families 0 2D

109 (It requires “ANY” of the indexes to be set 1.)
0: Disable Only Addon 2 & 5 of UPC & EAN Families

(It requires “ALL” of the indexes to be set 0.)

P Referto 11, 12, 14, 15, 17 and 18.

108 1: Enable UPC-E1 0 2D

0: Disable UPC-E1 (depends)

177

CipherLab 8600 BASIC Programming Part |

110

111

112

113

114
115

116

117
118

119

120
121

122

123
124

125

126

127

128

178

: Autodiscriminate UPC Composite

: UPC Always Linked

: UPC Never Linked

: Enable Composite CC-A/B

: Disable Composite CC-A/B

: Enable Composite CC-C

: Disable Composite CC-C

: Code 93 Length Limitation in Max/Min Length Format

O r O kP O P O Fr N

: Code 93 Length Limitation in Fixed Length Format
Code 93 Max Code Length / Fixed Lengthl

Code 93 Min Code Length / Fixed Length2

Note| engthl must be greater than Length2.

1: Code 11 Length Limitation in Max/Min Length Format
0: Code 11 Length Limitation in Fixed Length Format
Code 11 Max Code Length / Fixed Lengthl

Code 11 Min Code Length / Fixed Length2

Note| engthl must be greater than Length2.

1: Industrial 25 (Discrete 25) Length Limitation in Max/Min
Length Format

0: Industrial 25 (Discrete 25) Length Limitation in Fixed
Length Format

Industrial 25 (Discrete 25) Max Code Length / Fixed Lengthl
Industrial 25 (Discrete 25) Min Code Length / Fixed Length2
Note| angthl must be greater than Length2.

1: Codabar Length Limitation in Max/Min Length Format

0: Codabar Length Limitation in Fixed Length Format
Codabar Max Code Length / Fixed Lengthl

Codabar Min Code Length / Fixed Length2

Note| angthl must be greater than Length2.

: Transmit US Postal Check Digit

: DO NOT transmit US Postal Check Digit

: Enable Maxicode

: Disable Maxicode

: Enable Data Matrix

: Disable Data Matrix

: Enable QR Code

1
0
1
0
1
0
1
0 : Disable QR Code

Max. 55
Min. 4

Max. 55
Min. 4

Max. 55
Min. 4

Max. 55
Min. 4

2D

2D

2D

2D

2D
2D

2D

2D
2D

2D

2D
2D

2D

2D
2D

2D

2D

2D

2D

129

130

131

132

133
134

135

136

137

138

139

140

141

142

143

144

145

Appendix | ScannerDesTbl Arrays

: Enable US Planet 1
: Disable US Planet

: Enable US Postnet 1
: Disable US Postnet

: Enable MicroPDF417 1
: Disable MicroPDF417

: Enable PDF417 1

o r Ok O L O Bk

: Disable PDF417

Reserved -—
: Enable Japan Postal 1
: Disable Japan Postal

: Enable Australian Postal 1

: Disable Australian Postal

: Enable Dutch Postal 1

1

0

1

0]

1

O: Disable Dutch Postal

1: Enable UK Postal Check Digit 1
0: Disable UK Postal Check Digit
1: Enable UK Postal 1
O: Disable UK Postal

1

: Enable Joint Configuration of No Addon, Addon 2 & 5 for O
Any Member of UPC/EAN Families N°*

0: Disable Joint Configuration

2: Verify Interleaved 25 OPCC Check Digit 0
1: Verify Interleaved 25 USS Check Digit

0: DO NOT verify Interleaved 25 Check Digit

1: Enable UPC-A System Number & Country Code 1
0: Disable UPC-A System Number & Country Code

1: Enable UPC-EO System Number & Country Code 1
0: Disable UPC-EO System Number & Country Code

1: Enable UPC-E1 System Number & Country Code 1
0: Disable UPC-E1 System Number & Country Code

1: Convert Interleaved 25 to EAN-13 0]

0: No conversion

Scanner time-out duration in seconds for Aiming mode, 3 sec.

Laser mode and Auto-off mode
1 ~ 255 (sec): Decode time-out

0: No time-out (= always scanning)

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

179

CipherLab 8600 BASIC Programming Part |

146

147

148

149

150
151
152
153

154

155

156

157

158

159

160

161

180

Macro PDF Transmit / Decode Mode

2: Transmit any symbol in set / No particular order
1: Buffer all symbols / Transmit Macro PDF when complete
0: Passthrough all symbols

1: Enable Macro PDF Escape Characters

0: Disable Macro PDF Escape Characters

N/A

Aiming time-out duration for Aiming mode

1 ~ 65535 (in units of 5 milliseconds): Aiming time-out
0: No aiming

N/A

N/A

N/A

Focus Mode

: Smart Focus

: Near Focus

: Far Focus

: Enable Decode Aiming Pattern

: Disable Decode Aiming Pattern

: Enable Decode Illumination

: Disable Decode Illlumination

: Enable Picklist Mode

O r O kP O P O Fr N

: Disable Picklist Mode

1D Inverse Decoder

: Decode both regular and inverse

: Decode inverse 1D barcode only

: Decode regular 1D barcode only

: Reader sleeps during system suspend

: Reader is powered off during system suspend

: Enable USPS 4CB / One Code / Intelligent Mail
: Disable USPS 4CB / One Code / Intelligent Mail
: Enable UPU FICS Postal

O r O kP O P O Fr N

: Disable UPU FICS Postal
UPC/EAN — Bookland ISBN Format
1: UPC/EAN — Bookland ISBN 13
0: UPC/EAN — Bookland ISBN 10

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D

162

163

164

165

166

167

168

169

170

171
172
174

176
177
178
179

Data Matrix Inverse

2: Decode both regular and inverse

1: Decode inverse Data Matrix only

0: Decode regular Data Matrix only
Data Matrix Mirror

2: Decode both mirrored and unmirrored
1: Decode mirrored Data Matrix only
0: Decode unmirrored Data Matrix only
QR Code Inverse

: Decode both regular and inverse

: Decode inverse QR Code only

: Decode regular QR Code only

: Enable MicroQR

: Disable MicroQR

: Enable Aztec

SO r O kP O Fr N

: Disable Aztec

Aztec Inverse

: Decode both regular and inverse
: Decode inverse Aztec only

: Decode regular Aztec only

: Enable Coupon Code

: Disable Coupon Code

: Enable Chinese 25

SO r O kP O Fr DN

: Disable Chinese 25

Code 11 Check Digit Verification

2: Two check digits

1: One check digit

O: Disable

N/A

N/A

1: Enable GS1 formatting for EAN-128
0: Disable GS1 formatting for EAN-128
AlMark[0]

AlMark[1]

FSEAN128[0]

FSEAN128[1]

Appendix |

o O o o

ScannerDesTbl Arrays

2D

2D

2D

2D

2D

2D

2D

2D

2D

2D
2D
2D
2D

181

CipherLab 8600 BASIC Programming Part |

181

182

183

184

185

186

187

182

O r O P O FrP|O PFP O FP OFP N O P

: Enable Mobile Display

: Disable

: Two Times Read Redundancy

: One Time Read Redundancy

: No Read Redundancy

: Enable GS1 formatting for GS1 DataBar Ominidirectional
: Disable GS1 formatting for GS1 DataBar Ominidirectional
: Enable GS1 formatting for GS1 DataBar Limited

: Disable GS1 formatting for GS1 DataBar Limited

: Enable GS1 formatting for GS1 DataBar Expanded

: Disable GS1 formatting for GS1 DataBar Expanded

: Enable GS1 formatting for Composite CC-A/B

: Disable GS1 formatting for Composite CC-A/B

: Enable GS1 formatting for Composite CC-C

: Disable GS1 formatting for Composite CC-C

2D

2D

2D

2D

2D

2D

2D

Appendix Il
SYMBOLOGY PARAMETERS

Each of the scan engines can decode a number of barcode symbologies. This appendix
describes the associated symbology parameters accordingly.

IN THIS CHAPTER

CCD or Laser Scan ENQINecceviiiiiiiiiiic e v eaae e 183

2D Scan Engine — 1D Symbologiesooioiiiiiiiiiiiiiaaaas 196

2D Scan Engine — 2D Symbologiesoooiiiiiiiiiiiiias 209

CCD OR LASER SCAN ENGINE

CODABAR

No. (N1%) | Values (N2%) & Description Default Scan Engine
7 1: Enable Codabar (NW7) 1 CCD, Laser

0: Disable Codabar (NW7)
37 Select Codabar Start/Stop Character 0 CCD, Laser

0: abcd/abcd

1: abcd/tn*e
2: ABCD/ABCD
3: ABCD/TN*E
1
0
1
0

38 : Transmit Codabar Start/Stop Character 0 CCD, Laser
: DO NOT transmit Codabar Start/Stop Character
315 : Skip checking Codabar quiet zone 0 CCD, Laser

: Check Codabar quiet zone

Select Start/Stop Character

Select no start/stop characters, or one of the four different start/stop character pairs to be
included in the data being transmitted.

» abcd/abcd
) abcd/tn*e
» ABCD/ABCD
> ABCD/TN*E,

Transmit Start/Stop Character

Decide whether or not to include the start/stop characters in the data being transmitted.

183

CipherLab 8600 BASIC Programming Part |

CODE 2 OF 5 FAMILY
INDUSTRIAL 25
No. (N1%) | Values (N2%) & Description Default Scan Engine
4 1: Enable Industrial 25 1 CCD, Laser
O: Disable Industrial 25
30 1: Verify Industrial 25 Check Digit 0 CCD, Laser
0: DO NOT verify Industrial 25 Check Digit
31 1: Transmit Industrial 25 Check Digit 1 CCD, Laser
0: DO NOT transmit Industrial 25 Check Digit
35 Select Industrial 25 Start/Stop Pattern 0 CCD, Laser
0: Use Industrial 25 Start/Stop Pattern
1: Use Interleaved 25 Start/Stop Pattern
2: Use Matrix 25 Start/Stop Pattern
58 1: Industrial 25 Code Length Limitation in Max/Min Length 1 CCD, Laser
Format
0: Industrial 25 Code Length Limitation in Fixed Length
Format
59 Industrial 25 Max Code Length / Fixed Length 1 Max. 127 | CCD, Laser
60 Industrial 25 Min Code Length / Fixed Length 2 Min. 4 CCD, Laser
Verify Check Digit

Decide whether or not to perform check digit verification when decoding barcodes.

> If true and the check digit found incorrect, the barcode will not be accepted.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Select Start/Stop Pattern

Select a suitable Start/Stop pattern for reading a specific variant of 2 of 5 symbology.

> For example, flight tickets actually use an Industrial 2 of 5 barcode but with Interleaved 2 of 5
start/stop pattern. In order to read this barcode, the start/stop pattern selection parameter of
Industrial 2 of 5 should set to “Interleaved 25”.

Length Qualification

Because of the weak structure of the 2 of 5 symbologies, it is possible to make a “short scan”
error. To prevent the “short scan” error, define the “Length Qualification” settings to ensure that
the correct barcode is read by qualifying the allowable code length.

> If “Fixed Length” is selected, up to 2 fixed lengths can be specified.

> If “Max/Min Length” is selected, the maximum length and the minimum length must be
specified. It only accepts those barcodes with lengths that fall between max/min lengths
specified.

184

Appendix Il Symbology Parameters

INTERLEAVED 25

Refer to Industrial 25.

No. (N1%) Values (N2%) & Description Default Scan Engine

5 1: Enable Interleaved 25 1 CCD, Laser
O: Disable Interleaved 25

28 1: Verify Interleaved 25 Check Digit 0 CCD, Laser
0: DO NOT verify Interleaved 25 Check Digit

29 1: Transmit Interleaved 25 Check Digit 1 CCD, Laser
0: DO NOT transmit Interleaved 25 Check Digit

34 Select Interleaved 25 Start/Stop Pattern 1 CCD, Laser
0: Use Industrial 25 Start/Stop Pattern
1: Use Interleaved 25 Start/Stop Pattern
2: Use Matrix 25 Start/Stop Pattern

61 1: Interleaved 25 Code Length Limitation in Max/Min Length 1 CCD, Laser
Format
0: Interleaved 25 Code Length Limitation in Fixed Length
Format

62 Interleaved 25 Max Code Length / Fixed Length 1 Max. 127 | CCD, Laser

63 Interleaved 25 Min Code Length / Fixed Length 2 Min. 4 CCD, Laser

MATRIX 25

Refer to Industrial 25.

No. (N1%) | Values (N2%) & Description Default Scan Engine

6 1: Enable Matrix 25 0] CCD, Laser
O: Disable Matrix 25

32 1: Verify Matrix 25 Check Digit 0 CCD, Laser
0: DO NOT verify Matrix 25 Check Digit

33 1: Transmit Matrix 25 Check Digit 1 CCD, Laser
0: DO NOT transmit Matrix 25 Check Digit

36 Select Matrix 25 Start/Stop Pattern 2 CCD, Laser
0: Use Industrial 25 Start/Stop Pattern
1: Use Interleaved 25 Start/Stop Pattern
2: Use Matrix 25 Start/Stop Pattern

64 1: Matrix 25 Code Length Limitation in Max/Min Length 1 CCD, Laser
Format
0: Matrix 25 Code Length Limitation in Fixed Length Format

185

CipherLab 8600 BASIC Programming Part |

65 Matrix 25 Max Code Length / Fixed Length 1 Max. 127 | CCD, Laser

66 Matrix 25 Min Code Length / Fixed Length 2 Min. 4 CCD, Laser

COOP 25

No. (N1%) Values (N2%) & Description Default Scan Engine

21 1: Enable Coop 25 0 CCD, Laser
0: Disable Coop 25

171 1: Verify Coop 25 Check Digit 0 CCD, Laser
0: DO NOT verify Coop 25 Check Digit

172 1: Transmit Coop 25 Check Digit 1 CCD, Laser
0: DO NOT transmit Coop 25 Check Digit

Verify Check Digjt

Decide whether or not to perform check digit verification when decoding barcodes.

» If true and the check digit found incorrect, the barcode will not be accepted.

Note: “Verify Check Digit” must be enabled so that the check digit can be left out when it
is preferred not to transmit the check digit.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

CODE 39

No. (N1%) | Values (N2%) & Description Default Scan Engine

1 1: Enable Code 39 1 CCD, Laser
O: Disable Code 39

22 1: Transmit Code 39 Start/Stop Character 0 CCD, Laser
0: DO NOT transmit Code 39 Start/Stop Character

23 1: Verify Code 39 Check Digit 0 CCD, Laser
0: DO NOT verify Code 39 Check Digit

24 1: Transmit Code 39 Check Digit 1 CCD, Laser
0: DO NOT transmit Code 39 Check Digit

25 1: Full ASCII Code 39 0 CCD, Laser
0: Standard Code 39

173 1: Code 39 security normal 0 CCD, Laser
0: Code 39 security high

313 1: Skip checking Code 39 quiet zone 0 CCD, Laser
0: Check Code 39 quiet zone

186

Appendix Il Symbology Parameters

Transmit Start/Stop Character

Decide whether or not to include the start/stop characters in the data being transmitted.

Verify Check Digit

Decide whether or not to perform check digit verification when decoding barcodes.

> If true and the check digit found incorrect, the barcode will not be accepted.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Code 39 Full ASCII

Decide whether or not to support Code 39 Full ASCII that includes all the alphanumeric and
special characters.

CODE 93
No. (N1%) | Values (N2%) & Description Default Scan Engine
8 1: Enable Code 93 1 CCD, Laser
O: Disable Code 93
317 1: Skip checking Code 93 quiet zone 0 CCD, Laser
0: Check Code 93 quiet zone
CODE 128/EAN-128/ISBT 128
No. (N1%) | Values (N2%) & Description Default Scan Engine
9 1 : Enable Code 128 & EAN-128 1 CCD, Laser
O : Disable Code 128 & EAN-128
150 #9 for Code 128 & EAN-128 is required to be 1. 0 CCD, Laser
O: Decode Code 128 & EAN-128
(for compatibility with old firmware version)
1: Decode EAN- 128 only
2: Decode Code 128 only
3: Decode Code 128 & EAN-128
151 #9 for Code 128 & EAN-128 is required to be 1. 0 CCD, Laser
1: Strip EAN-128 Code ID
0: DO NOT strip EAN-128 Code ID
(for compatibility with old firmware version)
152 1: Enable ISBT 128 1 CCD, Laser

0: Disable ISBT 128

187

CipherLab 8600 BASIC Programming Part |

174 Enable GS1 formatting for EAN-128 0 CCD, Laser
1: Enable
O: Disable

312 1: Skip checking Code 128 quiet zone 0 CCD, Laser
0: Check Code 128 quiet zone

ITALIAN/FRENCH PHARMACODE

No. (N1%) | Values (N2%) & Description Default Scan Engine

2 1: Enable Italian Pharmacode 0 CCD, Laser
O: Disable Italian Pharmacode

3 1: Enable CIP 39 (French Pharmacode) 0 CCD, Laser
O: Disable CIP 39

26 1: Transmit Italian Pharmacode Check Digit 0 CCD, Laser
0: DO NOT transmit Italian Pharmacode Check Digit

27 1: Transmit CIP 39 Check Digit 0 CCD, Laser
0: DO NOT transmit CIP 39 Check Digit

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Note: Share the Transmit Start/Stop Character setting with Code 39.

MSI

No. (N1%) | Values (N2%) & Description Default Scan Engine

19 1: Enable MSI 0 CCD, Laser
O: Disable MSI

39 MSI Check Digit Verification 2 CCD, Laser
0: Single Modulo 10
1: Double Modulo 10
2: Modulo 11 and Modulo 10

40 MSI Check Digit Transmission 1 CCD, Laser
0: Last check digit is NOT transmitted
1: Both check digits are transmitted
2: Both check digits are NOT transmitted

67 1: MSI 25 Code Length Limitation in Max/Min Length Format 1 CCD, Laser
0: MSI 25 Code Length Limitation in Fixed Length Format

188

Appendix Il Symbology Parameters

68 MSI Max Code Length / Fixed Length 1 Max. 127 | CCD, Laser
69 MSI Min Code Length / Fixed Length 2 Min. 4 CCD, Laser
Verify Check Digit

Select one of the three calculations to perform check digit verification when decoding barcodes.

> If true and the check digit found incorrect, the barcode will not be accepted.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Length Qualification

Because of the weak structure of the symbology, it is possible to make a “short scan” error. To
prevent the “short scan” error, define the “Length Qualification” settings to ensure that the correct
barcode is read by qualifying the allowable code length.

> If “Fixed Length” is selected, up to 2 fixed lengths can be specified.

> If “Max/Min Length” is selected, the maximum length and the minimum length must be
specified. It only accepts those barcodes with lengths that fall between max/min lengths

specified.
NEGATIVE BARCODE
No. (N1%) | Values (N2%) & Description Default Scan Engine
55 1: Enable Negative Barcode 1 CCD, Laser

0: Disable Negative Barcode

PLESSEY

No. (N1%) | Values (N2%) & Description Default Scan Engine

20 1: Enable Plessey 0 CCD, Laser
0: Disable Plessey

41 1: Transmit Plessey Check Digits 1 CCD, Laser
0: DO NOT transmit Plessey Check Digits

42 1: Convert Standard Plessey to UK Plessey 1 CCD, Laser
0: No conversion

316 1: Skip checking Plessey quiet zone 0 CCD, Laser
0: Check Plessey quiet zone

Transmit Check Digits

Decide whether or not to include the two check digits in the data being transmitted.

Convert to UK Plessey

Decide whether or not to change each occurrence of the character ‘A’ to character ‘X’ in the
decoded data.

189

CipherLab 8600 BASIC Programming Part |

GS1 DATABAR (RSS) FAMILY

No. (N1%) | Values (N2%) & Description Default Scan Engine

74 1: Enable GS1 DataBar Limited (0] CCD, Laser
0: Disable GS1 DataBar Limited

75 Reserved - -

76 1: Enable GS1 DataBar Omnidirectional & GS1 DataBar O CCD, Laser
Expanded
O: Disable GS1 DataBar Omnidirectional & GS1 DataBar
Expanded

77 1: Transmit GS1 DataBar Omnidirectional Code ID 1 CCD, Laser
0: DO NOT transmit GS1 DataBar Omnidirectional Code 1D

78 1: Transmit GS1 DataBar Omnidirectional Application ID 1 CCD, Laser
O0: DO NOT transmit GS1 DataBar Omnidirectional
Application ID

79 1: Transmit GS1 DataBar Omnidirectional Check Digit 1 CCD, Laser
0: DO NOT transmit GS1 DataBar Omnidirectional Check
Digit

80 1: Transmit GS1 DataBar Limited Code ID 1 CCD, Laser
O0: DO NOT transmit GS1 DataBar Limited Code ID

81 1: Transmit GS1 DataBar Limited Application ID 1 CCD, Laser
0: DO NOT transmit GS1 DataBar Limited Application ID

82 1: Transmit GS1 DataBar Limited Check Digit 1 CCD, Laser
0: DO NOT transmit GS1 DataBar Limited Check Digit

83 1: Transmit GS1 DataBar Expanded Code ID 1 CCD, Laser
0: DO NOT transmit GS1 DataBar Expanded Code ID

175 Enable GS1 formatting for GS1 DataBar Family 0 CCD, Laser
1: Enable
O: Disable

Transmit Code ID

Decide whether or not to include the Code ID (“]e0”) in the data being transmitted.

Transmit Application ID

Decide whether or not to include the Application ID (“01”) in the data being transmitted.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

190

Appendix Il Symbology Parameters

TELEPEN

No. (N1%) | Values (N2%) & Description Default Scan Engine

84 1: Enable original Telepen (= Numeric mode) 0 CCD, Laser
0: Disable original Telepen (= ASCII mode)

85 1: Enable Telepen 0 CCD, Laser
0: Disable Telepen

Original Telepen (Numeric)

Decide whether or not to support Telepen in full ASCII code. By default, it supports ASCII mode.

> AIM Telepen (Full ASCII) includes all the alphanumeric and special characters.

UPC/EAN FAMILIES

EAN-8

No. (N1%) | Values (N2%) & Description Default Scan Engine

13 1: Enable EAN-8 1 CCD, Laser
O: Disable EAN-8

14 1: Enable EAN-8 Addon 2 0 CCD, Laser
O: Disable EAN-8 Addon 2

15 1: Enable EAN-8 Addon 5 0] CCD, Laser
O: Disable EAN-8 Addon 5

49 1: Transmit EAN-8 Check Digit 1 CCD, Laser
0: DO NOT transmit EAN8 Check Digit

53 1: Convert EAN-8 to EAN-13 0 CCD, Laser
0: No conversion

54 Convert EAN8 to EAN13 Format 0 CCD, Laser
1: GTIN-13
O: Default

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Convert EAN-8 to EAN-13

Decide whether or not to expand the read EAN-8 barcode into EAN-13. If true, the next
processing will follow the parameters configured for EAN-13.

EAN-13

191

CipherLab 8600 BASIC Programming Part |

No. (N1%) | Values (N2%) & Description Default Scan Engine

16 1: Enable EAN-13 & UPC-A 1 CCD, Laser
0: Disable EAN-13 & UPC-A

17 1: Enable EAN-13 & UPC-A Addon 2 0 CCD, Laser
O: Disable EAN-13 & UPC-A Addon 2

18 1: Enable EAN-13 & UPC-A Addon 5 0 CCD, Laser
O: Disable EAN-13 & UPC-A Addon 5

45 1: Enable ISBN Conversion 0 CCD, Laser
0: No conversion

46 1: Enable ISSN Conversion 0 CCD, Laser
0: No conversion

50 1: Transmit EAN-13 Check Digit 1 CCD, Laser
0: DO NOT transmit EAN13 Check Digit

Convert EAN-13 to ISBN

Decide whether or not to convert the EAN-13 barcode, starting with 978 and 979, to ISBN.

Convert EAN-13 to ISSN

Decide whether or not to convert the EAN-13 barcode, starting with 977 to ISSN.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

EAN-13 ADDON MODE

No. (N1%) | Values (N2%) & Description Default Scan Engine

300 1: Enable EAN-13 Addon Mode 414/419/434/439 0] CCD, Laser
0: Disable EAN-13 Addon Mode 414/419/434/439

301 1: Enable EAN-13 Addon Mode 378/379 0] CCD, Laser
O: Disable EAN-13 Addon Mode 378/379

302 1: Enable EAN-13 Addon Mode 977 0 CCD, Laser
O: Disable EAN-13 Addon Mode 977

303 1: Enable EAN-13 Addon Mode 978 0 CCD, Laser
O: Disable EAN-13 Addon Mode 978

304 1: Enable EAN-13 Addon Mode 979 0] CCD, Laser
O: Disable EAN-13 Addon Mode 979

305 1: Enable EAN-13 Addon Mode 491 0] CCD, Laser
O: Disable EAN-13 Addon Mode 491

192

Appendix Il Symbology Parameters

306 1: Enable EAN-13 Addon Mode 529 0 CCD, Laser
0: Disable EAN-13 Addon Mode 529

EAN-13 Addon Mode 414/419/434/439

When enabled, the EAN-13 barcode, starting with 414/419/434/439, is supposed to come with its
addons. Otherwise, the reading process fails.

EAN-13 Addon Mode 378/379

When enabled, the EAN-13 barcode, starting with 378/379, is supposed to come with its addons.
Otherwise, the reading process fails.

EAN-13 Addon Mode 977

When enabled, the EAN-13 barcode, starting with 977, is supposed to come with its addons.
Otherwise, the reading process fails.

EAN-13 Addon Mode 978

When enabled, the EAN-13 barcode, starting with 978, is supposed to come with its addons.
Otherwise, the reading process fails.

EAN-13 Addon Mode 979

When enabled, the EAN-13 barcode, starting with 979, is supposed to come with its addons.
Otherwise, the reading process fails.

EAN-13 Addon Mode 491

When enabled, the EAN-13 barcode, starting with 491, is supposed to come with its addons.
Otherwise, the reading process fails.

EAN-13 Addon Mode 529

When enabled, the EAN-13 barcode, starting with 529, is supposed to come with its addons.
Otherwise, the reading process fails.

GTIN

No. (N1%) | Values (N2%) & Description Default Scan Engine

87 1: Enable GTIN 0 CCD, Laser
0: Disable GTIN

UPC-A

No. (N1%) | Values (N2%) & Description Default Scan Engine

44 1: Convert UPC-A to EAN-13 1 CCD, Laser
0: No conversion

48 1: Transmit UPC-A Check Digit 1 CCD, Laser

0: DO NOT transmit UPC-A Check Digit

193

CipherLab 8600 BASIC Programming Part |

52 1: Transmit UPC-A System Number 1 CCD, Laser
0: DO NOT transmit UPC-A System Number

Convert UPC-A to EAN-13

Decide whether or not to expand the read UPC-A barcode into EAN-13. If true, the next
processing will follow the parameters configured for EAN-13.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Transmit System Number

Decide whether or not to include the system number in the data being transmitted.

Note: UPC-A is to be enabled together with EAN-13, therefore, check associated EAN-13
settings first.

UPC-E

No. (N1%) | Values (N2%) & Description Default Scan Engine

10 1: Enable UPC-E 1 CCD, Laser
O: Disable UPC-E

11 1: Enable UPC-E Addon 2 (0] CCD, Laser
O: Disable UPC-E Addon 2

12 1: Enable UPC-E Addon 5 (0] CCD, Laser
O: Disable UPC-E Addon 5

43 1: Convert UPC-E to UPC-A 0 CCD, Laser
0: No conversion

47 1: Transmit UPC-E Check Digit 1 CCD, Laser
0: DO NOT transmit UPC-E Check Digit

51 1: Transmit UPC-E System Number 0 CCD, Laser
0: DO NOT transmit UPC-E System Number

86 1: Enable UPC-E1 & UPC-EO (0] CCD, Laser
0: Enable UPC-EO only

148 1: Enable UPC-E Triple Check 0 CCD, Laser
0: Disable UPC-E Triple Check

Convert UPC-E to UPC-A

Decide whether or not to expand the read UPC-E barcode into UPC-A. If true, the next processing
will follow the parameters configured for UPC-A.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

194

Appendix Il Symbology Parameters

Transmit System Number

Decide whether or not to include the system number in the data being transmitted.

UPC-E Triple Check

Decide whether to apply a triple check to the UPC-E barcode. If true, the correct rate will be
improved; however, it may cause difficulties in reading some non-standard barcodes.

» This is helpful when the barcode is defaced and requires more attempts to check it.

ADDON SECURITY FOR UPC/EAN

No. (N1%) | Values (N2%) & Description Default Scan Engine

308 Addon security for UPC/EAN barcodes 0 CCD, Laser
Level: 0 — 30

Addon Security for UPC/EAN

The scanner is capable of decoding a mix of UPC/EAN barcodes with and without addons. The read
redundancy (level) ranging from O to 30 allows changing the number of times to decode a
UPC/EAN barcode before transmission.

UPC/EAN SECURITY
No. (N1%) | Values (N2%) & Description Default Scan Engine
190 1: UPC/EAN Security High 0 CCD, Laser

0: UPC/EAN Security Normal

UPC/EAN Security

High security ensures that the scanner read a UPC/EAN barcode correctly. By contrast, normal
security will enhance reading ability of the scanner.

UPC/EAN QUIET ZONE

No. (N1%) | Values (N2%) & Description Default Scan Engine

314 1: Skip checking UPC/EAN quiet zone 0 CCD, Laser
0: Check Code UPC/EAN quiet zone

Check Quiet Zone
Decide whether or not to check the UPC/EAN quiet zone.

195

CipherLab 8600 BASIC Programming Part |

2D SCAN ENGINE - 1D SYMBOLOGIES

The 1D symbologies supported for 2D scan engine are as follows:

CODABAR
No. (N1%) | Values (N2%) & Description Default Scan Engine
7 1: Enable Codabar (NW7) 1 2D
0: Disable Codabar (NW7)
38 1: Transmit Codabar Start/Stop Character 0 2D
0: DO NOT transmit Codabar Start/Stop Character
122 1: Codabar Length Limitation in Max/Min Length Format 1 2D
0: Codabar Length Limitation in Fixed Length Format
123 Codabar Max Code Length / Fixed Lengthl Max. 55 2D
124 Codabar Min Code Length / Fixed Length2 Min. 4 2D

Note| engthl must be greater than Length2.

Transmit Start/Stop Character

Decide whether or not to include the start/stop characters in the data being transmitted.

Length Qualification

The

barcode can be qualified by “Fixed Length” or “Max/Min Length”. The length of a barcode

refers to the number of characters (= human readable characters), including check digit(s) it
contains.

»

If “Fixed Length” is selected, up to 2 fixed lengths can be specified. With Fixed Length Format
selected, Lengthl must be greater than Length2. Otherwise, the format will be converted to
Max/Min Length Format, and Lengthl becomes Min Length while Length2 becomes Max
Length.

(1) Setting Lengthl to a nonzero value and Length2 to O will only accept barcodes whose
length equals Lengthl.

(2) Setting both Lengthl and Length2 to nonzero values will accept barcodes whose length
equal either Lengthl or Length2. Note Lengthl must be greater than Length2.

If “Max/Min Length” is selected, the maximum length and the minimum length must be
specified. It only accepts those barcodes with lengths that fall between max/min lengths
specified. Max Code Length must be greater than Min Code Length.

If both Lengthl and Length2 are set to zero, barcodes of any length will be accepted
regardless of “Fixed Length” or “Max/Min Length”.

Tips:

To accept barcodes of any length, set both Lengthl and Length2 to zero.

To accept barcodes within specified range, set Length limitation in Max/Min Length Format;
Max Code Length must be greater than Min Code Length.

To accept barcodes for one fixed length, set Length limitation in Fixed Length Format and
specify Lengthel to a nonzero value and Length2 to O.

To accept barcodes for either of two fixed lengths, set Length limitation in Fixed Length
Format and specify both Lengthl and Length2 values; Lengthl must be greater than Length2.

196

Appendix Il Symbology Parameters

CODE20OF 5

INDUSTRIAL 25 (DISCRETE 25)

No. (N1%) | Values (N2%) & Description Default Scan Engine

98 1: Enable Industrial 25 (Discrete 25) 1 2D
0: Disable Industrial 25 (Discrete 25)

119 1: Industrial 25 (Discrete 25) Length Limitation in Max/Min 1 2D
Length Format

0: Industrial 25 (Discrete 25) Length Limitation in Fixed
Length Format

120 Industrial 25 (Discrete 25) Max Code Length / Fixed Lengthl Max. 55 2D
121 Industrial 25 (Discrete 25) Min Code Length / Fixed Length2 'Min. 4 2D
Note| angthl must be greater than Length2.

Length Qualification

Because of the weak structure of the 2 of 5 symbologies, it is possible to make a “short scan”
error. To prevent the “short scan” error, define the “Length Qualification” settings to ensure that
the correct barcode is read by qualifying the allowable code length. Refer to Codabar.

197

CipherLab 8600 BASIC Programming Part |

INTERLEAVED 25

No. (N1%) | Values (N2%) & Description Default Scan Engine

5 1: Enable Interleaved 25 1 2D
O: Disable Interleaved 25

29 1: Transmit Interleaved 25 Check Digit 0 2D
0: DO NOT transmit Interleaved 25 Check Digit

61 1: Interleaved 25 Code Length Limitation in Max/Min Length 1 2D
Format
0: Interleaved 25 Code Length Limitation in Fixed Length
Format

62 Interleaved 25 Max Code Length / Fixed Length 1 Max. 55 2D

63 Interleaved 25 Min Code Length / Fixed Length 2 Min. 4 2D
Note| angthl must be greater than Length2.

140 0: DO NOT verify Interleaved 25 Check Digit 0 2D
1: Verify Interleaved 25 USS Check Digit
2: Verify Interleaved 25 OPCC Check Digit

144 1: Convert Interleaved 25 to EAN-13 0 2D
0: No conversion

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Length Qualification

Because of the weak structure of the 2 of 5 symbologies, it is possible to make a “short scan”
error. To prevent the “short scan” error, define the “Length Qualification” settings to ensure that
the correct barcode is read by qualifying the allowable code length. Refer to Codabar.

Verify Check Digit

Decide whether or not to perform check digit verification when decoding barcodes.

» If true and the check digit found incorrect, the barcode will not be accepted.

Convert to EAN-13

Decide whether or not to convert a 14-character Interleaved 25 barcode into EAN-13. If true, the
next processing will follow the parameters configured for EAN-13.

» Interleaved 25 barcode must have a leading zero and a valid EAN-13 check digit.

Note: “Convert Interleaved 25 to EAN

198

Appendix Il Symbology Parameters

CHINESE 25
No. (N1%) Values (N2%) & Description Default Scan Engine
169 1: Enable Chinese 25 0 2D
O: Disable Chinese 25
MATRIX 25
No. (N1%) | Values (N2%) & Description Default Scan Engine
6 1: Enable Matrix 25 0] 2D
O: Disable Matrix 25
32 1: Verify Matrix 25 Check Digit 0 2D
0: DO NOT verify Matrix 25 Check Digit
33 1: Transmit Matrix 25 Check Digit 0 2D
0: DO NOT transmit Matrix 25 Check Digit
64 1: Matrix 25 Code Length Limitation in Max/Min Length 1 2D
Format
0: Matrix 25 Code Length Limitation in Fixed Length Format
65 Matrix 25 Max Code Length / Fixed Length 1 Max. 55 2D
66 Matrix 25 Min Code Length / Fixed Length 2 Min. 4 2D

Note| angthl must be greater than Length2.

199

CipherLab 8600 BASIC Programming Part |

CODE 39

No. (N1%) | Values (N2%) & Description Default Scan Engine

1 1: Enable Code 39 1 2D
O: Disable Code 39

2 1: Enable Code 32 (ltalian Pharmacode) 0 2D
O: Disable Code 32

23 1: Verify Code 39 Check Digit 0 2D
0: DO NOT verify Code 39 Check Digit

24 1: Transmit Code 39 Check Digit 0 2D
0: DO NOT transmit Code 39 Check Digit

25 1: Full ASCII Code 39 (0] 2D
0: Standard Code 39

88 1: Code 39 Length Limitation in Max/Min Length Format 1 2D
0: Code 39 Length Limitation in Fixed Length Format

89 Code 39 Max Code Length / Fixed Lengthl Max. 55 2D

90 Code 39 Min Code Length / Fixed Length2 Min. 4 2D
Note| angthl must be greater than Length2.

100 1: Enable Trioptic Code 39 0 2D
0: Disable Trioptic Code 39

Verify Check Digjt

Decide whether or not to perform check digit verification when decoding barcodes.

> If true and the check digit found incorrect, the barcode will not be accepted.

Note: “Verify Check Digit” must be enabled so that the check digit can be left out when it
is preferred not to transmit the check digit.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Code 39 Full ASCII

Decide whether or not to support Code 39 Full ASCII that includes all the alphanumeric and
special characters.

Length Qualification

Refer to Codabar.

200

Appendix Il Symbology Parameters

CODE 93
No. (N1%) | Values (N2%) & Description Default Scan Engine
8 1: Enable Code 93 1 2D
0: Disable Code 93
113 1: Code 93 Length Limitation in Max/Min Length Format 1 2D
0: Code 93 Length Limitation in Fixed Length Format
114 Code 93 Max Code Length / Fixed Lengthl Max. 55 2D
115 Code 93 Min Code Length / Fixed Length2 Min. 4 2D
Note| angthl must be greater than Length2.
Length Qualification
Refer to Codabar.
CODE 128
CODE 128
No. (N1%) | Values (N2%) & Description Default Scan Engine
9 1: Enable Code 128 1 2D
0: Disable Code 128
ISBT 128
No. (N1%) | Values (N2%) & Description Default Scan Engine
99 1: Enable ISBT 128 1 2D
O: Disable ISBT 128
Note: ISBT 128 is a variant of Code 128 used in the blood bank industry.
UCC/EAN-128
No. (N1%) Values (N2%) & Description Default Scan Engine
101 1: Enable UCC/EAN-128 1 2D
O: Disable UCC/EAN-128
174 1: Enable GS1 formatting for EAN-128 0 2D
0: Disable GS1 formatting for EAN-128

201

CipherLab 8600 BASIC Programming Part |

MSI

No. (N1%) | Values (N2%) & Description Default Scan Engine

19 1: Enable MSI 0 2D
O: Disable MSI

39 MSI Check Digit Verification 1 2D
0: Single Modulo 10
1: Double Modulo 10
2: Modulo 11 and Modulo 10

40 MSI Check Digit Transmission 0 2D
0: Last Check Digit is NOT transmitted
1: Both Check Digits are transmitted
2: Both Check Digits are NOT transmitted

67 1: MSI 25 Code Length Limitation in Max/Min Length Format 1 2D
0: MSI 25 Code Length Limitation in Fixed Length Format

68 MSI Max Code Length / Fixed Length 1 Max. 55 2D

69 MSI Min Code Length / Fixed Length 2 Min. 4 2D
Note| engthl must be greater than Length2.

Verify Check Digit

Select one of the three calculations to perform check digit verification when decoding barcodes.

> If true and the check digit found incorrect, the barcode will not be accepted.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Length Qualification

Because of the weak structure of the symbology, it is possible to make a “short scan” error. To
prevent the “short scan” error, define the “Length Qualification” settings to ensure that the correct
barcode is read by qualifying the allowable code length. Refer to Codabar.

202

Appendix Il Symbology Parameters

GS1 DATABAR (RSS) FAMILY

No. (N1%) | Values (N2%) & Description Default Scan Engine

102 1: Convert GS1 DataBar to UPC/EAN (0] 2D
0: No conversion

103 1: Enable GS1 DataBar Expanded 1 2D
0: Disable GS1 DataBar Expanded

104 1: Enable GS1 DataBar Limited 1 2D
O: Disable GS1 DataBar Limited

105 1: Enable GS1 DataBar Omnidirectional 1 2D
O: Disable GS1 DataBar Omnidirectional

183 1: Enable GS1 formatting for GS1 DataBar Omnidirectional 0 2D
0: Disable GS1 formatting for GS1 DataBar Omnidirectional

184 1: Enable GS1 formatting for GS1 DataBar Limited 0 2D
0: Disable GS1 formatting for GS1 DataBar Limited

185 1: Enable GS1 formatting for GS1 DataBar Expanded 0 2D
0: Disable GS1 formatting for GS1 DataBar Expanded

Convert GS1 DataBar to UPC/EAN

Decide whether or not to convert the GS1 DataBar barcodes to UPC/EAN. If true,

(1) The leading “010” will be stripped from these barcodes and a “0” will be encoded as the first
digit; this will convert GS1 DataBar barcodes to EAN-13.

(2) For barcodes beginning with two or more zeros but not six zeros, this option will strip the
leading “0010” and report the barcode as UPC-A. The UPC-A Preamble setting that transmits the
system character and country code applies to such converted barcodes. Note that neither the
system character nor the check digit can be stripped.

> This only applies to GS1 DataBar Omnidirectional and GS1 DataBar Limited barcodes not
decoded as part of a Composite barcode.

203

CipherLab 8600 BASIC Programming Part |

UPC/EAN FAMILIES

The UPC/EAN families include No Addon, Addon 2, and Addon 5 for the following
symbologies:

» UPC-EO

UPC-E1

UPC-A

EAN-8

EAN-13

Bookland EAN (ISBN)

v Vv Vv Vv Vv

For any member belonging to the UPC/EAN families, Index #139 is used to decide the
joint configuration of No Addon, Addon 2, and Addon 5. Other parameters are listed
below.

No. (N1%) | Values (N2%) & Description Default Scan Engine

43 1: Convert UPC-EO to UPC-A 0 2D
0: No conversion

44 1: Convert UPC-A to EAN-13 0 2D
0: No conversion

47 1: Transmit UPC-EO Check Digit 1 2D
0: DO NOT transmit UPC-EO Check Digit

48 1: Transmit UPC-A Check Digit 1 2D
0: DO NOT transmit UPC-A Check Digit

51 1: Transmit UPC-EO System Number 1 2D
0: DO NOT transmit UPC-EO System Number

52 1: Transmit UPC-A System Number 1 2D
0: DO NOT transmit UPC-A System Number

53 1: Convert EAN-8 to EAN-13 1 2D
0: No conversion

91 1: Transmit UPC-E1 System Number 0 2D
0: DO NOT transmit UPC-E1 System Number

92 1: Transmit UPC-E1 Check Digit 0 2D
0: DO NOT transmit UPC-E1 Check Digit

95 1: Convert UPC-E1 to UPC-A 0 2D
0: No conversion

141 1: Enable UPC-A System Number & Country Code 1 2D
0: Disable UPC-A System Number & Country Code

142 1: Enable UPC-EO System Number & Country Code 1 2D
0: Disable UPC-EO System Number & Country Code

204

Appendix Il Symbology Parameters

143 1: Enable UPC-E1 System Number & Country Code 1 2D
0: Disable UPC-E1 System Number & Country Code

Convert UPC-EO/UPC-E1 to UPC-A

Decide whether or not to expand the read UPC-EQO/UPC-E1 barcode into UPC-A. If true, the next
processing will follow the parameters configured for UPC-A.

Convert EAN-8 to EAN-13

Decide whether or not to expand the read EAN-8 barcode into EAN-13.

If true, the next processing will follow the parameters configured for EAN-13.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Transmit System Number

Decide whether or not to include the system number will be included in the data being
transmitted.

UPC/EAN — BOOKLAND ISBN FORMAT

No. (N1%) | Values (N2%) & Description Default Scan Engine

161 UPC/EAN — Bookland ISBN Format 0 2D
1: UPC/EAN — Bookland ISBN 13
0: UPC/EAN — Bookland ISBN 10

205

CipherLab 8600 BASIC Programming Part |

UCC COUPON CODE
No. (N1%) |Values (N2%) & Description Default Scan Engine
168 1: Enable Coupon Code 0 2D

0: Disable Coupon Code
JOINT CONFIGURATION
No. (N1%) | Values (N2%) & Description Default Scan Engine
139 1: Enable Joint Configuration of No Addon, Addon 2 & 5 for O 2D

Any Member of UPC/EAN Families

0: Disable Joint Configuration

> If Index #139 for joint configuration is set 1, the parameters of Table | can be
configured separately. It depends on which member of the families needs to be

enabled.
> If Index #139 for Joint Configuration is set O, then

- When “ANY” of the indexes of Table Il is set 1, only Addon 2 & 5 of the whole

UPC/EAN families is enabled. (= Disable No Addon)

- When “ALL” of the indexes of Table Il are set 0, only No Addon is enabled that is

further decided by Table I.

When Results in
Index #139 Index # listed in Table Index # listed in Table No Addon
|]
=1 =1 N/A Enabled
=1 =0 N/A Disabled
=0 N/A Any =1 Disabled“°t®
(Al

=0 =1 All =0 Enabled
=0 =0 All =0 Disabled

Addon 2 &5

Enabled
Disabled
Enabled"°*
(Al
Disabled"°*

(All)

Disabled"°t

(All)

Note: The result marked with “All” indicates it occurs with the whole UPC/EAN families.

206

Appendix Il Symbology Parameters

TABLE |

No. (N1%) | Values (N2%) & Description Default Scan Engine

10 1: Enable UPC-EO 1 2D
0: Disable UPC-EO (depends)

13 1: Enable EAN-8 1 2D
0: Disable EAN-8 (depends)

16 1: Enable EAN-13 1 2D
0: Disable EAN-13 (depends)

97 1: Enable Bookland EAN 0 2D

(#16 for EAN-13 is required to be 1.)

0: Disable Bookland EAN

106 1: Enable UPC-A 1 2D
0: Disable UPC-A (depends)

108 1: Enable UPC-E1 0 2D
0: Disable UPC-E1 (depends)

Note: (1) Index #139 = 1: No Addon, Addon 2, Addon 5 of the symbology are enabled.
(2) Index #139 = 0 (and all the indexes in Table Il below must be set 0): Only No
Addon of the symbology is enabled.

TABLE Il

No. (N1%) | Values (N2%) & Description Default Scan Engine
11, 12 1: Enable Only Addon 2 & 5 of UPC & EAN Families 0 2D

14, 15 (It requires “ANY” of the indexes to be set 1.)

17, 18 0: Disable Only Addon 2 & 5 of UPC & EAN Families
107, 109 (It requires “ALL” of the indexes to be set 0.)

207

CipherLab 8600 BASIC Programming Part |

CODE 11
No. (N1%) | Values (N2%) & Description Default Scan Engine
96 1: Enable Code 11 0 2D
O: Disable Code 11
116 1: Code 11 Length Limitation in Max/Min Length Format 1 2D
0: Code 11 Length Limitation in Fixed Length Format
117 Code 11 Max Code Length / Fixed Lengthl Max. 55 2D
118 Code 11 Min Code Length / Fixed Length2 Min. 4 2D
Note| angthl must be greater than Length2.
170 Code 11 Check Digit Verification 0 2D

2: Two check digits
1: One check digit
O: Disable

Length Qualification

The barcode can be qualified by “Fixed Length” or “Max/Min Length”. The length of a barcode
refers to the number of characters (= human readable characters), including check digit(s) it
contains.

»
»

Note: When it is configured to use Fixed Length format, Lengthl must be greater than
Length2. Otherwise, the format will be converted to Max/Min Length Format, and
Lengthl becomes Min. Length while Length2 becomes Max. Length. In either
length format, when both of the values are configured to O, it means no limit in

If “Fixed Length” is selected, up to 2 fixed lengths can be specified.

If “Max/Min Length” is selected, the maximum length and the minimum length must be
specified. It only accepts those barcodes with lengths that fall between max/min lengths

specified.

length.
1D INVERSE
No. (N1%) | Values (N2%) & Description Default Scan Engine
157 1D Inverse Decoder 0 2D

2: Decode both regular and inverse
1: Decode inverse 1D barcode only

0: Decode regular 1D barcode only

208

Appendix Il Symbology Parameters

2D SCAN ENGINE - 2D SYMBOLOGIES

POSTAL CODE FAMILY

No. (N1%) | Values (N2%) & Description Default Scan Engine

125 1: Transmit US Postal Check Digit 1 2D
0: DO NOT transmit US Postal Check Digit

129 1: Enable US Planet 1 2D
O: Disable US Planet

130 1: Enable US Postnet 1 2D
O: Disable US Postnet

134 1: Enable Japan Postal 1 2D
0: Disable Japan Postal

135 1: Enable Australian Postal 1 2D
O: Disable Australian Postal

136 1: Enable Dutch Postal 1 2D
O: Disable Dutch Postal

137 1: Enable UK Postal Check Digit 1 2D
0: Disable UK Postal Check Digit

138 1: Enable UK Postal 1 2D
O: Disable UK Postal

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

No. (N1%) | Values (N2%) & Description Default Scan Engine

159 1: Enable USPS 4CB / One Code / Intelligent Mail 0 2D
0: Disable USPS 4CB / One Code / Intelligent Mail

160 1: Enable UPU FICS Postal 0 2D
O: Disable UPU FICS Postal

209

CipherLab 8600 BASIC Programming Part |

COMPOSITE CODES
CC-A/B/C
No. (N1%) | Values (N2%) & Description Default Scan Engine
111 1: Enable Composite CC-A/B 0 2D
0: Disable Composite CC-A/B
112 1: Enable Composite CC-C 0 2D
0: Disable Composite CC-C
186 1: Enable GS1 formatting for Composite CC-A/B 0 2D
0: Disable GS1 formatting for Composite CC-A/B
187 1: Enable GS1 formatting for Composite CC-C 0 2D
0: Disable GS1 formatting for Composite CC-C
TLC-39
No. (N1%) | Values (N2%) & Description Default Scan Engine
94 1: Enable TCIF Linked Code 39 0 2D
0: Disable TCIF Linked Code 39
Note: Code 39 must be enabled first!
UPC COMPOSITE
No. (N1%) | Values (N2%) & Description Default Scan Engine
110 0: UPC Never Linked 1 2D

1: UPC Always Linked

2: Autodiscriminate UPC Composite

Select UPC Composite Mode

UPC barcode can be “linked” with a 2D barcode during transmission as if they were one barcode.

There are three options for these barcodes:

210

Appendix Il Symbology Parameters

UPC Never Linked

Transmit UPC barcodes regardless of whether a 2D barcode is detected.

UPC Always Linked

Transmit UPC barcodes and the 2D portion. If the 2D portion is not detected, the UPC barcode
will not be transmitted.

) CC-A/B or CC-C must be enabled!

Auto-discriminate UPC Composites

Transmit UPC barcodes as well as the 2D portion if present.

Note: If “UPC Always Linked” is enabled, either CC-A/B or CC-C must be enabled.
Otherwise, it will not transmit even there are UPC barcodes.

UPC COMPOSITE
No. (N1%) | Values (N2%) & Description Default Scan Engine
93 1 : Enable GS1-128 Emulation Mode for UCC/EAN Composite O 2D

Codes

0 : Enable GS1-128 Emulation Mode for UCC/EAN Composite
Codes

211

CipherLab 8600 BASIC Programming Part |

MAXICODE, DATA MATRIX & QR CODE

No. (N1%) | Values (N2%) & Description Default Scan Engine

126 1: Enable Maxicode 1 2D
O: Disable Maxicode

127 1: Enable Data Matrix 1 2D
O: Disable Data Matrix

128 1: Enable QR Code 1 2D
0: Disable QR Code

165 1: Enable MicroQR 1 2D
0: Disable MicroQR

166 1: Enable Aztec 1 2D
O: Disable Aztec

2D INVERSE/MIRROR

No. (N1%) | Values (N2%) & Description Default Scan Engine

162 Data Matrix Inverse 0 2D
2: Decode both regular and inverse
1: Decode inverse Data Matrix only
0: Decode regular Data Matrix only

163 Data Matrix Mirror 0 2D
2: Decode both mirrored and unmirrored
1: Decode mirrored Data Matrix only
0: Decode unmirrored Data Matrix only

164 QR Code Inverse 0 2D
2: Decode both regular and inverse
1: Decode inverse QR Code only
0: Decode regular QR Code only

167 Aztec Inverse 0 2D

212

2: Decode both regular and inverse
1: Decode inverse Aztec only

0: Decode regular Aztec only

Appendix Il Symbology Parameters

PDF417

No. (N1%) | Values (N2%) & Description Default Scan Engine

131 1: Enable MicroPDF417 1 2D
O: Disable MicroPDF417

132 1: Enable PDF417 1 2D
O: Disable PDF417

146 Macro PDF Transmit / Decode Mode 0 2D
0: Passthrough all symbols
1: Buffer all symbols / Transmit Macro PDF when complete
2: Transmit any symbol in set / No particular order

147 1: Enable Macro PDF Escape Characters 0 2D
0: Disable Macro PDF Escape Characters

Macro PDF Transmit / Decode Mode

Macro PDF is a special feature for concatenating multiple PDF barcodes into one file, known as
Macro PDF417 or Macro MicroPDF417.

Decide how to handle Macro PDF decoding —

Buffer All Symbols / Transmit Macro PDF When Complete

Transmit all decoded data from an entire Macro PDF sequence only when the entire sequence is
scanned and decoded. If the decoded data exceeds the limit of 50 symbols, no transmission
because the entire sequence was not scanned!

» The transmission of the control header must be disabled.

Transmit Any Symbol in Set / No Particular Order

Transmit data from each Macro PDF symbol as decoded, regardless of the sequence.

» The transmission of the control header must be enabled.

Passthrough All Symbols

Transmit and decode all Macro PDF symbols and perform no processing. In this mode, the host
is responsible for detecting and parsing the Macro PDF sequences.

Macro PDF Escape Characters

Decide whether or not to transmit the Escape character. If true, it uses the backslash “\” as an
Escape character for systems that can process transmissions containing special data sequences.

» It will format special data according to the Global Label Identifier (GLI) protocol, which only
affects the data portion of a Macro PDF symbol transmission. The Control Header is always
sent with GLI formatting.

213

CipherLab 8600 BASIC Programming Part |

214

SCANNER PARAMETERS

Appendix I

This appendix describes the associated scanner parameters.

IN THIS CHAPTER

Y071 o T 1Y, [o 1< 215
Read RedUNAaNCYcuiiiiieiiie e aeaea 218
T 1S U 218
0 EY] Gl o =Y (=] (=] 163 219

SCAN MODE

Index #70 of the unsigned character array ScannerDesTbl is used to define a scan
mode that best suits the requirements of a specific application. Refer to Time-Out.

No. (N1%) Values (N2%) & Description

Default

Scan Engine

70 Scan Mode for Scanner Port 1
: Aiming Mode
: Test Mode
: Laser Mode

: Repeat Mode

8

7

6

5

4: Momentary Mode
3: Alternate Mode
2: Auto Power Off Mode

1: Continuous Mode

0: Auto Off Mode

70 Scan Mode for Scanner Port 1
: Aiming Mode

: Test Mode

: Alternate Mode

: Continuous Mode

O Fr W N ©

: Auto-off Mode

Any value other than the above: Laser Mode

Laser
Mode

Laser
Mode

CCD, Laser

2D

» For CCD or Laser scan engine, it supports 9 scan modes. See the comparison table

below. Index #72 is used for timeout duration, if necessary.

215

CipherLab 8600 BASIC Programming Part |

The aiming dot will not go off until it times out or you press the trigger key again to
start scanning. Index #145 is used for timeout duration, if necessary.

COMPARISON TABLE
Scan Mode Start to Scan Stop Scanning
Always | Press Hold Press Release Press Barcode Timeout

trigger |trigger trigger | trigger trigger being
once twice once read

Continuous mode v

Test mode v

Repeat mode 4

Momentary mode 4 v

Alternate mode v v

Aiming mode 4

Laser mode 4 v

Auto Off mode

NN

Auto Power Off
mode

Continuous Mode

Non-stop scanning

» To decode the same barcode repeatedly, move away the scan beam and target it at the
barcode for each scanning.

Test Mode

Non-stop scanning (for testing purpose)

) Capable of decoding the same barcode repeatedly.

Repeat Mode

Non-stop scanning

) Capable of re-transmitting barcode data if triggering within one second after a successful
decoding.

» Such re-transmission can be activated as many times as needed, as long as the time interval
between each triggering does not exceed one second.

Momentary Mode

Hold down the scan trigger to start with scanning.

» The scanning won't stop until you release the trigger.

Alternate Mode

Press the scan trigger to start with scanning.

» The scanning won't stop until you press the trigger again.

216

Appendix Il Scanner Parameters

Aiming Mode

Press the scan trigger to aim at a barcode. Within one second, press the trigger again to decode
the barcode.

» The scanning won't stop until (a) a barcode is decoded, (b) the preset timeout expires, or (c)
you release the trigger.

Laser Mode

Hold down the scan trigger to start with scanning.

» The scanning won't stop until (a) a barcode is decoded, (b) the preset timeout expires, or (c)
you release the trigger.

Auto Off Mode

Press the scan trigger to start with scanning.

» The scanning won't stop until (a) a barcode is decoded, or (b) the preset timeout expires.

Auto Power Off Mode

Press the scan trigger to start with scanning.

» The scanning won't stop until the pre-set timeout expires, and, the preset timeout period
re-counts after each successful decoding.

217

CipherLab 8600 BASIC Programming Part |

READ REDUNDANCY

This parameter is used to specify the level of reading security. You will have to
compromise between reading security and decoding speed.

No. (N1%) | Values (N2%) & Description Default Scan Engine
56 3: Three Times Read Redundancy for Scanner Port 1 0 CCD, Laser
2: Two Times Read Redundancy for Scanner Port 1
1: One Time Read Redundancy for Scanner Port 1
0: No Read Redundancy for Scanner Port 1
182 2: Two Times Read Redundancy 0 2D
1: One Time Read Redundancy

0: No Read Redundancy
» No Redundancy:

If “No Redundancy” is selected, one successful decoding will make the reading valid
and induce the “READER Event”.

» One/Two/Three Times:

If “Three Times” is selected, it will take a total of four consecutive successful
decodings of the same barcode to make the reading valid. The higher the reading
security is (that is, the more redundancy the user selects), the slower the reading
speed gets.

TIME-OUT

These parameters are used to limit the maximum scanning time interval for a specific
scan mode.

No. (N1%) | Values (N2%) & Description Default Scan Engine

72 Scanner time-out duration in seconds for Aiming mode, 3 sec. CCD, Laser
Laser mode, Auto Off mode, and Auto Power Off mode

1 ~ 255 (sec): Decode time-out
0: No time-out

145 Scanner time-out duration in seconds for Aiming mode, 3 sec. 2D
Laser mode and Auto-off mode

1 ~ 255 (sec): Decode time-out
0: No time-out (= always scanning)

149 Aiming time-out duration for Aiming mode 200 CCD, Laser;
1 ~ 65535 (in units of 5 milliseconds): Aiming time-out = 1/2D

0: No aiming sec.)

218

Appendix Il Scanner Parameters

USER PREFERENCES

No. (N1%) | Values (N2%) & Description Default Scan Engine

153 Focus Mode 0 2D
2: Smart Focus
1: Near Focus
O: Far Focus

154 1: Enable Decode Aiming Pattern 1 2D
0: Disable Decode Aiming Pattern

155 1: Enable Decode lllumination 1 2D
O: Disable Decode Illlumination

156 1: Enable Picklist Mode 0 2D
O: Disable Picklist Mode

Note: Picklist mode enables the decoder to decode only barcodes aligned under the
center of the laser aiming pattern.

158 1: Reader sleeps during system suspend 0 2D

0: Reader is powered off during system suspend

Note: The reader powered off during system suspend is to save battery power; however,
the reader takes about 3 seconds to restart the power after system resumes.

181 1: Enable Mobile Display 0 2D
O: Disable

219

CipherLab 8600 BASIC Programming Part |

220

Appendix IV

RESERVED HOST COMMANDS

There are some commands reserved for the host computer to read/remove data of the
transaction file, or to adjust the system time. User's BASIC program does not need to do
any processing because these tasks will be processed by the background routines of the

BASIC run-time.

Note: (1) Each reserved command is ended with a carriage return, which can be

changed by COM_DELIMITER. If any format error occurs, the mobile computer
would return “NAK”.

CLEAR
Purpose To erase data of a specified transaction file.
Syntax A$ = CLEAR
A$ = CLEAR file%
Remarks The command CLEAR will clear data of the first transaction file, which is the
default one.
“A$” is a string variable to be assigned to the result.
A$ Meaning
OK The command is processed successfully.
NAK Any format error occurs.
“file%” is an integer variable in the range of 1 to 6, indicating which transaction
file is to be erased.
Example CLEAR3 " to delete data of the 3rd transaction file

221

CipherLab 8600 BASIC Programming Part |

READ
Purpose To read the top most record of a specified transaction file.
Syntax A$ = READ
A$ = READ file%
Remarks The command READ will read the top most record of the first transaction file,
which is the default one.
“A$” is a string variable to be assigned to the result; it may be the desired data
string if the command is successfully processed.
Otherwise, it may have one of the values as follows:
A$ Meaning
OVER | There is no data in the transaction file.
NAK Any format error occurs.
“file%” is an integer variable in the range of 1 to 6, indicating of which
transaction file the record is to be read.
Example READ1 " to read a record from the first transaction file
REMOVE
Purpose To delete one record from the top of a specified transaction file.
Syntax A$ = REMOVE
A$ = REMOVE file%
Remarks The command REMOVE will delete one record from the top of the first
transaction file, which is the default one.
“A$” is a string variable to be assigned to the result.
A$ Meaning
NEXT The command is processed successfully.
OVER | There is no more data.
NAK Any format error occurs.
“file%” is an integer variable in the range of 1 to 6, indicating of which
transaction file the record is to be deleted.
Example REMOVE2 " to delete a record from the 2nd transaction file
TR
Purpose To get the current system time.
Syntax A$ = TR
Remarks “A$” is a string variable to be assigned to the result, which is in the form of
“yyyymmddhhnnss”.
Otherwise, it returns NAK for any format error.
Example TR

222

Appendix IV Reserved Host Commands

™

Purpose To set new system time.
Syntax A$ = TWyyyymmddhhnnss

Remarks “A$” is a string variable to be assigned to the result.

A$ Meaning

OK The command is processed successfully.
NAK Any format error occurs.
Format of system time —
> yyyy for 4-digit year
» mm for 2-digit month
» dd for 2-digit day
» hh for 2-digit hour, in 24-hour format
» nn for 2-digit minute
» ss for 2-digit second
Example TW20050520103000 " set system time as 2005/May 20/10:30:00

223

CipherLab 8600 BASIC Programming Part |

224

Appendix V
DEBUGGING COMMANDS

The command START_DEBUG will write the activities happening on the system to a
specified COM port. It is very useful when user needs to monitor the system or diagnose
a problem.

When START_DEBUG is executed, the system will send a series of messages to a
specified COM port until the command STOP_DEBUG is executed. Refer to the table
below listing debugging messages.

START_DEBUG

Purpose To start the debug function.
Syntax START_DEBUG(N%, Baudrate%o, Parity%, Data%, Handshake%bo)

Remarks
Parameters Values Remarks

N% lor2or5 Indicates which COM port is to be set.

Baudrate%

[

: 115200 bps Specifies the baud rate of the COM port.
: 76800 bps

: 57600 bps

: 38400 bps

: 19200 bps

: 9600 bps

: 4800 bps

: 2400 bps

Parity%o : None Specifies the parity of the COM port.
: Odd

: Even

Data%o : 7 data bits Specifies the data bits of the COM port.
: 8 data bits

Handshake%o : None Specifies the method of flow control for the
- CTS/RTS COM port.

: XON/XOFF

W N P NP WN P O N O O DM OWN

If a certain COM port has been used in the BASIC program, it is better to use
another COM port for debugging to avoid conflicts. COM port type must be
specified before using START_DEBUG.

225

CipherLab 8600 BASIC Programming Part |

Example SET_COM_TYPE(1, 1) “ specify RS-232 for COM1
START_DEBUG(1, 1, 1, 2, 1) “ use COM1 to send debug messages

“ the COM port properties are 115200, None,
8, No handshake

STOP_DEBUG

Purpose To terminate the debug function.

Syntax STOP_DEBUG

Remarks This is the counter command of START_DEBUG.
Example STOP_DEBUG

226

*

L(7), T(0)

ADD_RECORD(1,““10001 Justin
08300930113013001130150018002000°*)

L(8), T

L9, TO)

ASGN(2)

L(10), T(O)

ASGN(3)

L(11), T(O)
ASGN(“CipherLab 5107")
L(12), T(O)
ASGN(“510AC_100.BAS™)
L(13), T(O0)

L(25), T(0)
ARY (1)
ASGN(*“OK Good Morning!’)

L(39), T(0)
SET_COM(1,1,1,2,1)
L(40), T(0)
OPEN_COM(1)

L(41), T(O)
START_NETWORK

Appendix V. Debugging Commands

DEBUGGING EXAMPLE

The following are the debugging messages received when running a sample BASIC
program.

L(42), T(0)
ON_NET(316)

L(43), T(O)

ON_ENQUIRY(128)

GOTO(68)
L(68), T(0)
L(69), T
L(70), T(O)
GOTO(68)

L(69), T(0)
EVENT(16)
L(79), T(D
L(80), T(D
OFF_READER(1)
L(81), T(1)
OFF_READER(2)
L(82), T(1)
CcLS

L(83), T(D
HIDE_CALENDAR
L(84), T(1)
BEEP(..)

227

CipherLab 8600 BASIC Programming Part |

DEBUGGING MESSAGES

Debugging messages indicate the activities happening on the system. The common
debugging messages are listed as follows.

Message Explanation

ABS(N) Indicating the command ABS is processed.

ADD(N1%,N2%) Indicating an addition is processed.

ADD_RECORD(file%,data$) Indicating the command ADD_RECORD is processed.

ALPHA_LOCK(status%o) Indicating the command ALPHA_ LOCK is processed.

AND Indicating the logical operation AND is processed.

ARY(N%) Indicating an N-element array is declared.

ASC(X$) Indicating the command ASC is processed.

ASGN(A) Indicating that the value A is assigned to the variable. A could
be an integer, long integer, character, string, or any type.

AUTO_OFF(N%) Indicating the command AUTO_OFF is processed. N% is the
assigned time interval.

BACK_LIGHT_DURATIONC(...) Indicating the command BACK_LIGHT_DURATION is processed.

BACKLIT(Dev%o, state%) Indicating the command BACKLIT is processed.

BACKUP_BATTERY Indicating the command BACKUP_BATTERY is processed.

BEEP(...) Indicating the command BEEP is processed.

BIT_OPERATORC(...) Indicating the command BIT_OPERATOR is processed.

BT_INQUIRYS$ Indicating the command BT_INQUIRY$ is processed.

BT_PAIRING(addr$,type%o) Indicating the command BT_PAIRING is processed.

CHR$(N%) Indicating the command CHR is processed.

CIRCLE(...) Indicating the command CIRCLE is processed.

CLOSE_COM(N%bo) Indicating the command CLOSE_COM is processed. N% is the
number of the COM port.

CLR_KBD Indicating the command CLR_KBD is processed.

CLR_RECT(...) Indicating the command CLR_RECT is processed.

CLS Indicating the command CLS is processed.

CODE_TYPE Indicating the command CODE_TYPE is processed.

COM_DELIMITER(N%0,C%) Indicating the command COM_DELIMITER is processed.

CURSORX Indicating the command CURSOR_ X is processed.

CURSORY Indicating the command CURSOR_Y is processed.

DATES$ Indicating the system date is inquired.

DATES(X$) Indicating the system date is updated. X$ is the new system
date.

DAY_OF_WEEK Indicating the command DAY_OF_WEEK is processed.

228

DEL_RECORD(file%[,index%])
DEL_TRANSACTION_DATA(N%)

DEL_TRANSACTION_DATA_EX(fi
1e%,N%)

DISABLE_READER(N%)

DIV(N1%,N2%)
DNS_RESOLVER(A$)

DOWNLOAD_BASIC(file%,
port%o)

EMPTY_FILE(file%)

EMPTY_TRANSACTION

EMPTY_TRANSACTION_EX(file%
)

ENABLE_READER(N%)

EQU? (N1%,N2%)
EVENT(O)
EVENT(1)
EVENT(2)
EVENT(3)
EVENT(4)
EVENT(5)
EVENT(6)
EVENT(7)
EVENT(8)
EVENT(9)
EVENT(10)
EVENT(11)
EVENT(12)
EVENT(13)
EVENT(14)
EVENT(15)
EVENT(16)
EVENT(17)
EVENT(18)
EVENT(19)

Appendix V. Debugging Commands

Indicating the command DEL_RECORD is processed.

Indicating the command DEL_TRANSACTION_DATA is processed.
N% is the number of records to be deleted.

Indicating the command DEL_TRANSACTION_DATA EX is
processed.

Indicating the command DISABLE READER is processed. N% is
the number of the reader port.

Indicating a division is processed.
Indicating the command DNS_RESOLVER is processed.
Indicating the command DOWNLOAD_BASIC is processed.

Indicating the command EMPTY_FILE is processed. file% is the
number of the DBF file.

Indicating the command EMPTY_TRANSACTION is processed.

Indicating the command EMPTY_TRANSACTION_EX is processed.
file% is the number of the transaction file.

Indicating the command ENABLE READER is processed. N% is
the number of the reader port.

Indicating the decision “IF N1% = N2%” is processed.
Indicating the “COM(1) EVENT” happens.
Indicating the “COM(2) EVENT” happens.
Indicating the “COM(3) EVENT” happens.
Reserved.

Reserved.

Reserved.

Reserved.

Reserved.

Reserved.

Indicating the “TIMER(1) EVENT” happens.
Indicating the “TIMER(2) EVENT” happens.
Indicating the “TIMER(3) EVENT” happens.
Indicating the “TIMER(4) EVENT” happens.
Indicating the “TIMER(5) EVENT” happens.
Indicating the “ON MINUTE EVENT” happens.
Indicating the “ON HOUR EVENT” happens.
Indicating the “READER(1) EVENT” happens.
Indicating the “READER(2) EVENT” happens.
Indicating the “FUNCTION(1) EVENT” happens.
Indicating the “FUNCTION(2) EVENT” happens.

229

CipherLab 8600 BASIC Programming Part |

EVENT(20) Indicating the “FUNCTION(3) EVENT” happens.
EVENT(21) Indicating the “FUNCTION(4) EVENT” happens.
EVENT(22) Indicating the “FUNCTION(5) EVENT” happens.
EVENT(23) Indicating the “FUNCTION(6) EVENT” happens.
EVENT(24) Indicating the “FUNCTION(7) EVENT” happens.
EVENT(25) Indicating the “FUNCTION(8) EVENT” happens.
EVENT(26) Indicating the “FUNCTION(9) EVENT” happens.
EVENT(27) Indicating the “FUNCTION(10) EVENT” happens.
EVENT(28) Indicating the “FUNCTION(11) EVENT” happens.
EVENT(29) Indicating the “FUNCTION(12) EVENT” happens.
EVENT(30) Reserved.
EVENT(31) Indicating the “ESC EVENT” happens.
EXP(N1%,N2%) Indicating an exponentiation is processed.
FALSE?(N%) Indicating the “IF” statement or the “WHILE” statement is
processed.
FILL_RECT(...) Indicating the command FILL_RECT is processed.
FIND_RECORD(...) Indicating the command FIND_RECORD is processed.
FLASH_READ$(N%o) Indicating the command FLASH_READS$ is processed.
FLASH_WRITE(N%,A$) Indicating the command FLASH_WRITE is processed.
FREE_MEMORY Indicating the command FREE_MEMORY is processed.

FUNCTION_TOGGLE(status%o) Indicating the command FUNCTION_TOGGLE is processed.

GE? (N1%,N2%) Indicating the decision “IF N1% >= N2%” is processed.
GET_ALPHA_LOCK Indicating the command GET_ALPHA_LOCK is processed.
GET_BKLIT_LEVEL(...) Indicating the command GET_BKLIT_LEVEL is processed.
GET_COLORC(..) Indicating the command GET_COLOR is processed.
GET_CTS(N%) Indicating the command GET_CTS is processed. N% is the
number of the COM port.
GET_DEVICE_ID Indicating the command DEVICE_ID is processed.
GET_FILE_ERROR Indicating the command GET_FILE_ERROR is processed.
GET_IMAGE Indicating the command GET__IMAGE is processed.
GET_LANGUAGE Indicating the command GET_LANGUAGE is processed.

GET_NET_PARAMETER$(index% ' Indicating the command GET_NET_PARAMETERS$ is processed.
)

GET_NET_STATUS(index%b) Indicating the command GET_NET_STATUS is processed.

GET_READER_DATA$(N%) Indicating the command GET_READER_DATAS$ is processed. N%
is the number of the reader port.

GET_READER_SETTING(N%b) Indicating the command GET_READER_SETTING is processed.
N% is the setting number.

230

GET_RECORDS$(file%[,index%b])

GET_RECORD_NUMBER(file%[i
ndex%o])

GET_RFID_KEY(TagType%)
GET_TARGET_MACHINES$
GET_TCPIP_MESSAGE

GET_TRANSACTION_DATA$(N%

)

GET_TRANSACTION_DATA EX$
(file%,N%)

GOSUB(N%)

GOTO(N%)

GT? (N1%,N2%)
HEX$(N%)
INKEY$(AS$)

INPUT
INPUT_MODE(mode%)
INSTR([N%,] X$,YS$)
INT(N%)
IOPIN_STATUS(N%)
KEY_CLICK(status%)
L(N%)

LCASES$(X3$)

LE? (N1%,N2%)
LED(...)
LEFT$S(X$,N%)
LEN(X$)

LINE(...)
LOCATE(N1%,N2%)
LOCK

LT? (N1%,N2%)
MAIN_BATTERY
MENU(Item$)
MEMORY_INFORMATION(N%b6)
MID$S(X$,N%[,M%])
MOD(N1%,N2%)

Appendix V. Debugging Commands

Indicating the command GET_RECORDS$ is processed.
Indicating the command GET_READER_NUMBER is processed.

Indicating the command GET_RFID_KEY is processed.
Indicating the command GET_TARGET_MACHINES is processed.
Indicating the command GET_TCPIP_MESSAGE is processed.

Indicating the command GET_TRANSACTION_DATA is processed.
N% is the ordinal number of the record to be read.

Indicating the

processed.

command GET_TRANSACTION_DATA_EX is

Indicating the program branches to a subroutine. N% is the line
number of the first line of the subroutine.

Indicating the program branches to line number N%.
Indicating the decision “IF N1% > N2%” is processed.
Indicating the command HEX$ is processed.
Indicating the command INKEY is processed.
Indicating the command INOUT is processed.
Indicating the command INPUT_MODE is processed.
Indicating the command INSTR is processed.
Indicating the command INT is processed.

Indicating the command IOPIN_STATUS is processed.
Indicating the command KEY_CLICK is processed.
Indicating the line number being executed.

Indicating the command LCASE$ is processed.
Indicating the decision “IF N1% <= N2%” is processed.
Indicating the command LED is processed.

Indicating the command LEFT$ is processed.
Indicating the command LEN is processed.

Indicating the command LINE is processed.

Indicating the command LOCATE is processed.
Indicating the command LOCK is processed.
Indicating the decision “IF N1% < N2%” is processed.
Indicating the command MAIN_BATTERY is processed.
Indicating the command MENU is processed.
Indicating the command MEMORY__INFORMATION is processed.
Indicating the command MID$ is processed.

Indicating a modulo operation is processed.

231

CipherLab 8600 BASIC Programming Part |

MOVE_TO(file%[,index%],recor

d_number%o)

MOVE_TO_NEXT(file%[,index%]

)

MOVE_TO_PREVIOUS(file%[,ind

ex%])
MUL(N1%,N2%)
NEG (N1%)

NEQ? (N1%,N2%)
NCLOSE(N%)

NOT
NREAD$(N%)

NWRITE(N%,A$)
OCT$(N%)
OFF_ALL
OFF_COM(N%)

OFF_ESC
OFF_HOUR_SHARP
OFF_KEY(number%o)
OFF_MINUTE_SHARP
OFF_READER(N%b)

OFF_TCPIP
OFF_TIMER(N%)

ON_COM(N1%),N2%)

ON_ESC(N%)

ON_GOSUB(N%)

ON_GOTO(N%)

ON_HOUR_SHARP(N%)

ON_KEY(N%)

232

Indicating the command MOVE_TO is processed. file% is the
number of the DBF file; index% is the number of the IDX file;
record_number% is the record number to move to.

Indicating the command MOVE_TO_NEXT is processed.

Indicating the command MOVE_TO_PREVIOUS is processed.

Indicating a multiplication is processed.
Indicating a negation is processed.
Indicating the decision “IF N1% <> N2%"” is processed.

Indicating the command NCLOSE is processed. N% is the
connection number.

Indicating the logical operation NOT is processed.

Indicating the command NREAD$ is processed. N% is the
connection number.

Indicating the command NWRITE is processed.
Indicating the command OCT$ is processed.
Indicating the command OFF ALL is processed.

Indicating the command OFF COM is processed. N% is the
number of the COM port.

Indicating the command OFF ESC is processed.

Indicating the command OFF HOUR_SHARP is processed.
Indicating the command OFF KEY is processed.

Indicating the command OFF MINUTE_SHARP is processed.

Indicating the command OFF READER is processed. N% is the
number of the reader port.

Indicating the command OFF TCPIN is processed.

Indicating the command OFF TIMER is processed. N% is the
number of the timer.

Indicating the command ON COM GOSUB is called. N1% is the
umber of the COM port; N2% is the line number of the
subroutine to branch to.

Indicating the command ON ESC GOSUB is called. N% is the line
number of the subroutine to branch to.

Indicating the command ON GOSUB is called. N% is the line
number of the subroutine to branch to.

Indicating the command ON GOTO is called. N% is the line
number of the subroutine to branch to.

Indicating the command ON HOUR_SHARP GOSUB is called. N%
is the line number of the subroutine to branch to.

Indicating the command ON KEY GOSUB is called. N% is the line
number of the subroutine to branch to.

ON_MINUTE_SHARP(N%)

ON_POWER_ON(N%)

ON_READER(N1%,N2%)

ON_TCPIP(N%)

ON_TIMER(N1%,N2%)
OPEN_COM(N%)

OR
POWER_ON(N%)

PRINT(AS$)
PUT_PIXEL(...)
PUTKEY(N%)
RAM_SIZE
READ_COM$(N%)

READER_CONFIG
READER_SETTING(N1%,N2%)

RECORD_COUNT(file%)
RECTANGLE(...)
RESTART

RETURN(N%)

RIGHT$(X$,N%)
ROM_SIZE
SAVE_TRANSACTION(data$)

SAVE_TRANSACTION_EX(file%,
data$)

SD_FREE_MEMORY
SD_SIZE
SELECT_FONT(font%)
SET_AUTO_BKLIT(...)
SET_BKLIT_LEVEL(...)
SET_COLOR(...)

Appendix V. Debugging Commands

Indicating the command ON MINUTE_SHARP GOSUB is called.
N% is the line number of the subroutine to branch to.

Indicating the command ON POWER_ON GOSUB is called. N% is
the line number of the subroutine to branch to.

Indicating the command ON READER GOSUB is called. N1% is
the number of the reader port; N2% is the line nhumber of the
subroutine to branch to.

Indicating the command ON TCPIP GOSUB is called. N% is the
line number of the subroutine to branch to.

Indicating the command ON TIMER GOSUB is called.

Indicating the command OPEN_COM is processed. N% is the
number of the COM port.

Indicating the logical operation OR is processed.

Indicating the command POWER_ON is processed. N% is the
value of the setting.

Indicating the command PRINT is processed.
Indicating the command PUT_PIXEL is processed.
Indicating the command PUTKEY is processed.
Indicating the command RAM_SIZE is processed.

Indicating the command READ_COMS$ is processed. N% is the
number of the COM port.

Indicating the command READER_CONFIG is processed.

Indicating the command READER_SETTING is processed. N1% is
the setting number; N2% is the value of the setting.

Indicating the command RECORD_COUNT is processed.
Indicating the command RECTANGLE is processed.
Indicating the command RESTART is processed.

Indicating the command RETURN is processed. N% is the line
number to return, if it is not null.

Indicating the command RIGHT$ is processed.

Indicating the command ROM_SIZE is processed.

Indicating the command SAVE_TRANSACTION is processed.
Indicating the command SAVE_TRANSACTION_EX is processed.

Indicating the command SD_FREE_MEMORY is processed.
Indicating the command SD_SIZE is processed.
Indicating the command SELECT_FONT is processed.
Indicating the command SET_AUTO_BKLIT is processed.
Indicating the command SET_BKLIT_LEVEL is processed.
Indicating the command SET_COLOR is processed.

233

CipherLab 8600 BASIC Programming Part |

SET_COM(...)
SET_COMM_TYPE(N%,type%)
SET_CURSOR(status%)
SET_LANGUAGE(N%)

SET_NET_PARAMETER(index%,
AS$)

SET_PRECISION(N%)

SET_RFID_KEY(...)
SET_RFID_READ(...)
SET_RFID_WRITE(...)
SET_RTS(N1%,N2%)

SET_VIDEO_MODE(mode%)
SET_WEDGE(WedgeSetting$)
SHOW_BMP(...)
SHOW_IMAGE(...)

SIGN(N%)
SOCKET_CAN_SEND(...)
SOCKET_HAS_DATA(N%)

SOCKET_OPEN(N%)

START TCPIP
STOP_BEEP
STOP TCPIP
STR$(N%)
STRINGS(...)
SUB(N1%,N2%)

SYSTEM_INFORMATIONS(index
%)
SYSTEM_PASSWORD(A$)

T(N%)

TCP_ERR_CODE
TCP_OPEN(...)

234

Indicating the command SET_COM is processed.
Indicating the command SET_COMM_TYPE is processed.
Indicating the command CURSOR is processed.

Indicating the command SET_LANGUAGE is processed. N% is
the setting of language.

Indicating the command SET_NET_PARAMETER is processed.

Indicating the command SET_PRECISION is processed. N% is
the numeric precision.

Indicating the command SET_RFID_KEY is processed.
Indicating the command SET_RFID_READ is processed.
Indicating the command SET_RFID_WRITE is processed.

Indicating the command SET_RTS is processed. N1% is the
number of the COM port; N2% is the RTS status.

Indicating the command SET_VIDEO_MODE is processed.
Indicating the command SET_WEDGE is processed.
Indicating the command SHOW_BMP is processed.
Indicating the command SHOW_ IMAGE is processed.
Indicating the command SGN is processed.

Indicating the command SOCKET_CAN_SEND is processed.

Indicating the command SOCKET_HAS_ DATA is processed. N%
is the connection number.

Indicating the command SOCKET_OPEN is processed. N% is the
connection number.

Indicating the command START TCPIP is processed.
Indicating the command STOP BEEP is processed.
Indicating the command STOP TCPIP is processed.
Indicating the command STR$ is processed.
Indicating the command STRING$ is processed.
Indicating a subtraction is processed.

Indicating the command SYSTEM_INFORMATIONS is processed.

Indicating the command SYSTEM_PASSWORD is processed. A$ is
the character string to be written as the password.

Indicating the stack's level. When the program branches to a
subroutine, the stack's level increases 1; when the program
returns, the stack's level decreases 1. It can be used to check if
the “stack overflow” problem happens.

Indicating the command TCP_ERR_CODE is processed.

Indicating the command TCP_OPEN is processed.

TIMES
TIMES(X$)

TIMER
TRANSACTION_COUNT

TRANSACTION_COUNT_EX(file
%)

TRIM_LEFT$(X$)
TRIM_RIGHT$(X$)
UCASES$(X$)

UNLOCK
UPDATE_BASIC(file%)
UPDATE_RECORD(...)

UPDATE_TRANSACTION(N%b,dat
a%)

UPDATE_TRANSACTION_EX(...)

USER_COLOR(...)
VAL(X$)
VALF(X$)
VERSION(A$)

VIBRATOR(mode%b)
WAIT (duration%b)
WAIT_HOURGLASS(...)
WRITE_COM(N%,A$)
XOR

Appendix V. Debugging Commands

Indicating the system time is inquired.

Indicating the system time is updated. X$ is the new system
time.

Indicating the command TIMER is processed.
Indicating the command TRANSACTION_COUNT is processed.

Indicating the command TRANSACTION_COUNT_EX is
processed.

Indicating the command TRIM_LEFTS$ is processed.

Indicating the command TRIM_RIGHTS is processed.
Indicating the command UCASES$ is processed.

Indicating the command UNLOCK is processed.

Indicating the command UPDATE_BASIC is processed.
Indicating the command UPDATE_RECORD is processed.
Indicating the command UPDATE_TRANSACTION is processed.

Indicating the command UPDATE_TRANSACTION_EX is
processed.

Indicating the command USER_COLOR is processed.
Indicating the command VAL is processed.
Indicating the command VALR is processed.

Indicating the command VERSION is processed. A$ is the
character string to be written as the version information.

Indicating the command VIBRATOR is processed.
Indicating the command WAIT is processed.

Indicating the command WAIT_HOURGLASS is processed.
Indicating the command WRITE_COM is processed.

Indicating the logical operation XOR is processed.

235

CipherLab 8600 BASIC Programming Part |

236

Appendix VI
RUN-TIME ERROR TABLE

Error Code Explanation

Unknown operator

Operand count mismatch
Type mismatch

Can't perform type conversion
No available temp string
lllegal operand

Not an L-value

Float error

© 0N o g bW DN P

Bad array subscript

=
o

Unknown function

[N
[N

lllegal function call

[EY
N

Return without GOSUB

237

CipherLab 8600 BASIC Programming Part |

238

KEY CODE TABLE

Appendix VI

Key Name | Key Code Key Name | Key Code Key Name | Key Code Key Name | Key Code
CLEAR 1 > 62 a 97 F6 133
BS 8 A 65 b 98 F7 134
CR 13 B 66 c 99 F8 135
ESC 27 C 67 d 100 F9 136
SP 32 D 68 e 101 F10 137
35 E 69 f 102 F11 138
$ 36 F 70 g 103 F12 139
% 37 G 71 h 104 UP 140
& 38 H 72 i 105 DOWN 141
(40 I 73 j 106 LEFT 142
) 41 J 74 k 107 RIGHT 143
* 42 K 75 | 108 F13 144
+ 43 L 76 m 109 F14 145
, 44 M 77 n 110 F15 146
- 45 N 78 o 111 F16 147
46 (@) 79 p 112 F17 148
/ 47 P 80 q 113 F18 149
0 48 Q 81 r 114 F19 150
1 49 R 82 S 115 F20 151
2 50 S 83 t 116 152
3 51 T 84 u 117 153
4 52 U 85 \Y, 118 154
5 53 \Y 86 w 119 FESC 155
6 54 W 87 X 120 156
7 55 X 88 y 121 TAB 160
8 56 Y 89 z 122 161
9 57 Z 90 F1 128 DEL 162
58 91 F2 129 VOL + 163
59 \ 92 F3 130 VOL - 164
< 60 93 F4 131 167
= 61 94 F5 132 169

239

CipherLab 8600 BASIC Programming Part |

240

Index

A

ABS = 29
ADD_RECORD = 152
ALPHA_LOCK = 112
ASC = 43
AUTO_OFF » 61

B

BACK_LIGHT_DURATION = 114
BACKLIT = 115, 116, 117
BACKUP_BATTERY = 107

BEEP = 99

BIT_OPERATOR = 29

C

CHR$ = 43

CIRCLE = 130
CLEAR = 221
CLR_KBD = 108
CLR_RECT = 124
CLS = 125
CODE_TYPE = 85
CURSOR = 120, 121
CURSOR_X = 121
CURSOR_Y = 122

D

DATES$ = 104

DAY_OF WEEK = 105

DEL_RECORD = 153
DEL_TRANSACTION_DATA = 144
DEL_TRANSACTION_DATA_EX = 145
DEVICE_ID$ = 66

DIM = 29

DISABLE READER = 76
DOWNLOAD_BASIC = 71

E

EMPTY_FILE = 154
EMPTY_TRANSACTION = 146
EMPTY_TRANSACTION_EX = 146
ENABLE READER = 77

EXIT « 37

F

FILL_RECT = 123
FIND_RECORD = 155

FLASH_READS$ = 139
FLASH_WRITE = 140

FOR ... NEXT = 37
FREE_MEMORY = 141
FUNCTION_TOGGLE = 113

G

GET_ALPHA_LOCK = 112
GET_BKLIT_LEVEL = 117
GET_COLOR = 120
GET_FILE_ERROR = 159
GET_IMAGE - 128
GET_LANGUAGE = 133
GET_READER_DATAS$ = 77
GET_READER_SETTING = 86
GET_RECORDS$ = 156
GET_RECORD_NUMBER = 156
GET_RFID_KEY = 90
GET_TARGET_MACHINES$ = 67
GET_TRANSACTION_DATAS$ = 147
GET_TRANSACTION_DATA_EX$ = 147
GET_TRIGGER = 110

GOSUB = 30

GOTO = 30

H
HEX$ = 43
I

IF ... THEN ... [ELSE..] = 33

IF ... THEN ... {ELSE IF...} [ELSE...] END
IF « 33

IF ... THEN ... END IF « 34

INKEY$ = 108

INPUT « 109

INPUT_MODE = 109

INSTR » 40

INT = 30

IOPIN_STATUS = 62

K
KEY_CLICK = 109
L

LCASES$ = 43
LED -« 101
LEFTS = 41
LEN « 40

CipherLab 8600 BASIC Programming Part |

LINE = 130 ROM_SIZE = 140

LOCATE = 122 s

LOCK = 59

M SAVE_TRANSACTION « 148
SAVE_TRANSACTION_EX « 148

MAIN_BATTERY = 107 SD_FREE_MEMORY = 142

MEMORY_INFORMATION = 138 SD_SIZE = 142

MENU 64 SELECT_FONT » 136

MID$ = 41 SET_AUTO_BKLIT » 115

MOVE_TO » 157 SET_BKLIT_LEVEL = 116

MOVE_TO_NEXT = 157 SET_COLOR = 119

MOVE_TO_PREVIOUS = 157 SET_LANGUAGE = 135

o SET_PRECISION « 31
SET_PWR_KEY = 111

OCTS = 44 SET_RFID_KEY = 90

OFF ALL » 48 SET_RFID_READ = 89

OFF COM « 48 SET_RFID_WRITE = 89

OFF ESC = 49 SET_TRIG2KEY = 111

OFF HOUR_SHARP = 49 SET_TRIGGER = 110

OFF KEY = 50 SET_VIDEO_MODE = 118

OFF MINUTE_SHARP « 50 SET_WEDGE » 98

OFF READER = 51 SGN = 31

OFF TCPIP = 51 SHOW_BMP = 128

OFF TIMER = 51 SHOW_IMAGE « 128

ON .. GOSUB ... = 35 START_DEBUG = 225

ON .. GOTO ... = 36 STOP BEEP = 100

ON COM... GOSUB... = 52 STOP_DEBUG = 226

ON ESC GOSUB... = 52 STR$ » 44

ON HOUR_SHARP GOSUB... = 53 STRINGS = 46

ON KEY... GOSUB... = 54 SYSTEM_INFORMATIONS = 68

ON MINUTE_SHARP GOSUB... = 56 SYSTEM_PASSWORD = 70

ON POWER_ON GOSUB = 57 -

ON READER... GOSUB... = 57

ON TCPIP GOSUB... = 58 TIMES » 105

ON TIMER... GOSUB... = 58 TIMER » 106

OSK_TOGGLE = 111 TR = 222
TRANSACTION_COUNT » 149

P TRANSACTION_COUNT_EX 149

POWER_ON = 65 TRIM_LEFTS$ = 42

PRINT « 123 TRIM_RIGHTS$ « 42

PUT_PIXEL « 131 TW « 223

PUTKEY 110 U

R UCASES = 44

RAM_SIZE = 141 UNLOCK = 60

READ e« 222 UPDATE_BASIC = 72

READER_CONFIG = 77 UPDATE_RECORD = 158

READER_SETTING = 86 UPDATE_TRANSACTION = 150

RECORD_COUNT » 157 UPDATE_TRANSACTION_EX = 150

RECTANGLE » 131 USER_COLOR = 120

REM « 31 Vv

REMOVE « 222

RESTART = 65 VAL = 44

RIGHTS = 42 VALR = 45

VERSION = 69
VIBRATOR = 103

w

WAIT = 106
WAIT_HOURGLASS = 124
WHILE ... WEND = 38

Index

	Release Notes
	Introduction
	Development Environment
	1.1 Directory Structure
	1.2 BASIC Runtime Engines
	1.3 Development Flow
	1.3.1 Download Runtime Engine
	1.3.2 Edit/Compile BASIC Programs
	1.3.3 Download BASIC Object Files

	Using BASIC Compiler
	2.1 File Menu
	2.2 Edit Menu
	2.3 Configure Menu
	2.4 Compile Menu
	2.5 Help Menu

	Basics of the CipherLab BASIC Language
	3.1 Constants
	3.1.1 String
	3.1.2 Numeric

	3.2 Variables
	3.2.1 Variable Names and Declaration Characters
	3.2.2 Array Variables

	3.3 Expression and Operators
	3.3.1 Assignment Operator
	3.3.2 Arithmetic Operator
	3.3.3 Relational Operator
	3.3.4 Logical Operator

	3.4 Operator Precedence
	3.5 Labels
	3.6 Subroutines
	3.7 Programming Style

	BASIC Commands
	4.1 General Commands
	4.2 Commands for Decision Structures
	4.3 Commands for Looping Structures
	4.4 Commands for String Processing
	4.4.1 Combining Strings
	4.4.2 Comparing Strings
	4.4.3 Getting the Length of a String
	4.4.4 Searching for Strings
	4.4.5 Retrieving Part of Strings
	4.4.6 Converting for Strings
	4.4.7 Creating Strings of Repeating Characters

	4.5 Commands for Event Trapping
	4.5.1 Event Triggers
	4.5.2 Lock and Unlock

	4.6 System Commands
	4.6.1 General
	4.6.2 System Information
	4.6.3 Security
	4.6.4 Program Manipulation
	BASIC Program – Format of Transaction File

	4.7 Barcode Reader Commands
	4.7.1 General
	Sample Code

	4.7.2 Code Type
	4.7.3 Reader Settings

	4.8 RFID Reader Commands
	4.8.1 Virtual COM
	4.8.2 Data Format
	4.8.3 Authentication

	4.9 Keyboard Wedge Commands
	4.9.1 Definition of the WedgeSetting Array
	1st Element: KBD / Terminal Type
	2nd Element
	3rd Element: Inter-Character Delay

	4.9.2 Composition of Output String

	4.10 Speaker Commands
	4.11 LED Command
	4.12 Vibrator Commands
	4.13 Real-Time Clock Commands
	4.14 Battery Commands
	4.15 Keypad Commands
	4.15.1 General
	4.15.2 ALPHA Key
	4.15.3 FN Key

	4.16 LCD Commands
	4.16.1 Properties
	4.16.2 Cursor
	4.16.3 Display
	4.16.4 Clear
	4.16.5 Image
	4.16.6 Graphics

	4.17 Fonts
	4.17.1 Font Size
	4.17.2 Display Capability
	4.17.3 Multi-language Font File
	4.17.4 Special Font Files

	4.18 Memory Commands
	4.18.1 Flash
	4.18.2 SRAM
	4.18.3 SD Card

	4.19 File Manipulation
	4.19.1 DAT Files
	4.19.2 DBF Files and IDX Files
	Key Number
	Key Value

	4.19.3 Error Code

	4.20 SD Card
	4.20.1 File System
	4.20.2 Directory
	4.20.3 File Name

	ScannerDesTbl Arrays
	Symbology Parameter Table for CCD/Laser Reader
	Symbology Parameter Table for 2D Reader

	Symbology Parameters
	CCD or Laser Scan Engine
	Codabar
	Code 2 of 5 Family
	Industrial 25
	Interleaved 25
	Matrix 25
	Coop 25

	Code 39
	Code 93
	Code 128/EAN-128/ISBT 128
	Italian/French Pharmacode
	MSI
	Negative Barcode
	Plessey
	GS1 DataBar (RSS) Family
	Telepen
	UPC/EAN Families
	EAN-8
	EAN-13
	EAN-13 Addon Mode
	GTIN
	UPC-A
	UPC-E
	Addon Security for UPC/EAN
	UPC/EAN Security
	UPC/EAN Quiet Zone

	2D Scan Engine – 1D Symbologies
	Codabar
	Code 2 of 5
	Industrial 25 (Discrete 25)
	Interleaved 25
	Chinese 25
	Matrix 25

	Code 39
	Code 93
	Code 128
	Code 128
	ISBT 128
	UCC/EAN-128

	MSI
	GS1 DataBar (RSS) Family
	UPC/EAN Families
	UPC/EAN — Bookland ISBN Format

	UCC Coupon Code
	Joint Configuration
	Table I
	Table II

	Code 11
	1D Inverse

	2D Scan Engine – 2D Symbologies
	Postal Code Family
	Composite Codes
	CC-A/B/C
	TLC-39
	UPC Composite
	UPC Composite
	Maxicode, Data Matrix & QR Code
	2D Inverse/Mirror
	PDF417

	Scanner Parameters
	Scan Mode
	Comparison Table

	Read Redundancy
	Time-Out
	User Preferences

	Reserved Host Commands
	Debugging Commands
	Debugging Example
	Debugging Messages

	Run-Time Error Table
	Key Code Table
	Index

